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Note to readers

This book serves as a comprehensive and reliable guide to the preparative protocols
for hematopoietic stem cell transplantation (HSCT) in pediatric patients, based on
the latest scientific evidence available at the time of publication. However, it is es-
sential to acknowledge that information regarding HSCT conditioning protocols is
continually evolving, as medical professionals and the research community make
ongoing advancements in this field.

Therefore, readers and treating physicians are strongly encouraged to consult the
most recent local and international practice guidelines. It is also advisable to ver-
ify the information presented in this booklet with additional sources to ensure the
best possible decision-making for patient care. By staying informed and up-to-date,
healthcare providers can optimize treatment strategies and improve outcomes for
pediatric patients undergoing HSCT.
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Preface

Hematopoietic stem cell transplantation (HSCT) has become a well-established, life-sa-
ving treatment for many pediatric patients suffering from hematological malignancies,
inborn errors of metabolism and immunity, bone marrow failure syndromes, hemog-
lobinopathies, and other conditions. The rapid advancements in preparative protocols,
graft-versus-host disease (GVHD) prophylaxis, donor selection, human leukocyte anti-
gen (HLA) typing, graft manipulation, and supportive care have significantly improved
survival rates for patients undergoing HSCT.

Pediatric Hematopoietic Stem Cell Transplantation: Indications and Conditioning Proto-
cols Guide from RIOHCT offers a comprehensive overview of the conditioning protocols
currently utilized in the Pediatric Cell Therapy Unit at RIOHCT. This book serves as an
essential resource for healthcare professionals seeking insights into HSCT practices.

We trust that this information will provide you with a comprehensive understanding of
the conditioning protocols used for HSCT in pediatric patients or reinforce your existing
knowledge. We hope you will keep this booklet readily accessible and consider it a valua-
ble guide when treating your patients.

As medicine is an ever-evolving field, new information or treatments may have emerged
since this book was published. We acknowledge that this text may not be entirely free of
errors, and we welcome any feedback you may have. Your input will help us ensure that
we fulfill our commitment to providing accurate and up-to-date information to the best
of our abilities.

Tahereh Rostami



Foreword by the Director of the Research Institute for Oncology,
Hematology, and Cell Therapy

As the field of pediatric hematopoietic stem cell transplantation (HSCT) progresses, a
critical factor influencing outcomes is the conditioning regimen employed before trans-
plantation. This book is dedicated to exploring the various conditioning regimens used
in pediatric HSCT, highlighting their roles, rationale, and implications on patient care.

In pediatric patients, conditioning regimens are not merely preparatory steps; they pro-
foundly affect the success of the transplant and the overall well being of the child. Un-
derstanding the intricacies of these regimens—ranging from myeloablative to non-mye-
loablative options—is essential for clinicians, caregivers, and researchers. The choice of
conditioning not only impacts engraftment and relapse rates but also influences the risk
of complications and long-term outcomes.

This book aims to provide healthcare professionals with evidence-based insights into the
development and application of conditioning regimens tailored for pediatric patients. We
delve into the pharmacology, dosing, and timing of various agents, as well as the conside-
rations for specific patient populations. Moreover, the guidelines outlined herein address
how to navigate the complexities associated with the unique physiology and developmen-
tal needs of children undergoing HSCT.

By consolidating current knowledge and expert perspectives, this book aspires to be a
valuable resource in optimizing conditioning regimens, ultimately enhancing the overall
success of HSCT in pediatric patients. We encourage active engagement with this mate-
rial to ensure that all children receive the best possible care during this critical phase of
their treatment journey.

Ghasem Janbabaei
Director of Research Institute for Oncology, Hematology and Cell Therapy
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INTRODUCTION 1

Hematopoietic stem cell transplantation (HSCT) has emerged as a critical treatment op-
tion for pediatric patients with a variety of malignant and non-malignant disorders. An
essential component of both allogeneic and autologous HSCT is the conditioning regimen
administered prior to the hematopoietic cell infusion.

The aim of conditioning regimens in HSCT is multifaceted, primarily focusing on
eradicating hematological malignancies in cases where the transplant is indicated, pro-
viding sufficient immunosuppression to ensure engraftment, preventing both rejection
and graft-versus-host disease (GVHD), and creating stem cell niches within the host
bone marrow (BM) for the incoming stem cells. When evaluating a patient for allogeneic
HSCT, several critical factors influence the choice of conditioning regimen, including
the diagnosis, disease status, donor availability (such as human leukocyte antigen (HLA)
disparity and the associated risk of rejection), graft source, and patient-related factors like
comorbid conditions (1, 2).

Conditioning regimens used in HSCT have traditionally been classified into three main
categories: myeloablative, reduced-intensity, and non-myeloablative (NMA) (3).

Myeloablative Regimens

Myeloablative, or “high-dose” regimens, typically consist of alkylating agents with or
without total body irradiation (TBI). These regimens are expected to completely ablate
marrow hematopoiesis, preventing autologous hematologic recovery. Myeloablative con-
ditioning (MAC) regimens are associated with significant toxicity and require stem cell
support to restore normal blood cell production.

Toxicity-Reduced Myeloablative Conditioning
Toxicity-reduced MAC aims to maintain the myeloablative intensity of the conditioning
regimen while reducing toxicity. This approach involves replacing certain components of
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the conditioning regimen with less toxic alternatives, without compromising the overall
myeloablative effect. Two examples of this strategy include:
¢ Replacing cyclophosphamide (CY) with a less toxic immunosuppressive agent,
such as fludarabine (FLU)
¢ Substituting busulfan (BU) with the alkylating agent treosulfan (TREO)

These modifications allow for a reduction in toxicity while preserving the myeloab-
lative intensity necessary for successful HSCT. By carefully selecting alternative agents
with comparable myeloablative properties but improved safety profiles, toxicity-reduced
MAC regimens aim to minimize treatment-related complications and improve outcomes
for patients undergoing HSCT (4-7).

Non-Myeloablative Regimens

NMA regimens, although causing minimal cytopenia, do not require stem cell support.
These regimens rely more on the graft-versus-tumor (GVT) effect to eradicate malignant
cells rather than on high-dose cytotoxic therapy. NMA regimens are associated with lo-
wer toxicity compared to MAC regimens.

Reduced-Intensity Regimens

Reduced-intensity conditioning (RIC) regimens are those that do not fit the definition
of MAC or NMA conditioning regimens. These regimens result in potentially prolon-
ged cytopenia and require hematopoietic stem cell (HSC) support for engraftment. RIC
regimens aim to strike a balance between reducing toxicity while maintaining sufficient
immunosuppression to allow for donor cell engraftment and the desired GVT effect.

RIC regimens are differentiated from myeloablative regimens by a reduction in the
dose of alkylating agents or TBI, typically by at least 30%. It is essential to understand
that “intensity” in this context refers to the level of reversible and irreversible myelotoxi-
city, rather than non-hematologic toxicity (8, 9).

Augmented (intensified) Reduced-Intensity Regimen

RIC regimens have been associated with higher rates of engraftment failure compared to
MAC. To address this issue, augmented (intensified) RIC regimens have been developed
and evaluated. By intensifying certain components of the RIC regimen, such as increa-
sing the dose of specific agents or adding additional drugs, the augmented approach aims
to enhance the myeloablative effect while maintaining the reduced toxicity profile asso-
ciated with RIC. Studies have shown that the use of augmented RIC regimens can lead
to improved overall survival (OS) rates, decreased relapse rates, and without significant
increase in treatment-related mortality (TRM) (10).
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Transplant Conditioning Intensity

The traditional classification into MAC, RIC, and NMA regimens has several shortco-
mings. The incorporation of novel agents like thiotepa (TT) and TREO, which have redu-
ced non-hematological toxicity compared to traditional alkylating agents, is not adequa-
tely captured by the current MAC/RIC/NMA framework. Moreover, this classification
system fails to account for the added intensity contributed by purine analogs used for
immunosuppression (e.g., FLU) or disease-specific drugs employed to reduce relapse risk
(e.g., cytarabine, etoposide (ETO)). This leads to a loss of important prognostic informa-
tion. On the other hand, the lack of clear definitions has led to the arbitrary use of terms
like “sequential conditioning” by many authors.

Given these limitations, a more comprehensive approach, such as the transplant con-
ditioning intensity (TCI) score, has been proposed to address them. This tool assigns
weighted scores to individual conditioning regimen components based on their myelo-
ablative potential and non-hematological toxicity (Table 1). The sum of these scores ca-
tegorizes patients into three groups: low TCI (1-2), intermediate TCI (2.5-3.5), and high
TCI (4-6). This classification provides a finer categorization of conditioning regimens,
allowing for a nuanced assessment of conditioning intensity and a better evaluation of
non-relapse mortality (NRM) and relapse risk. However, its performance in the pediatric
population has yet to be established (11).

Table 1. Intensity-Weighted Scores for Common Components of Transplantation Condition-
ing Regimens

o s Dose Level Added Points for
TR Each Dose Level
TBI Fractionated (Gy) <5 6-8 >9 1
Busulfan (mg/kg) <6.41V&<8PO| 9.61IV& 12PO | 12.81V & 16 PO 1
Treosulfan (g/m2) 30 36 42 1
Melphalan (mg/m2) <140 >140 >200 1
Thiotepa (mg/kg) <10 >10 >20 0.5
Fludarabine (mg/m2) <160 >160 0.5
Clofarabine (mg/m2) <150 >150 0.5
Cyclophosphamide (mg/kg) <90 >90 0.5
Carmustine (mg/m2) <250 280-310 >350 0.5
Cytarabine (g/m2) <6 >6 0.5
Etoposide (mg/kg) <50 >50 0.5

1V: intravenously, PO: per os, TBI: total body irradiation
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Pharmacology of Drugs Used in High-Dose Chemo-
therapy

Alkylating Agents
Alkylating agents exert their cytotoxic effects through a shared mechanism of interfe-
ring with DNA transcription into RNA, thereby inhibiting protein synthesis. These agents
work by substituting alkyl groups for hydrogen atoms on the DNA molecules of cancer
cells. Alkylating agents are classified into two categories:

® Monofunctional Alkylating Agents: Contain a single active chemical moiety.

¢ Bifunctional Alkylating Agents: Contain two reactive groups that bind to sepa-

rate DNA sites (12, 13).

Busulfan

Busulfan (BU) is an antineoplastic alkylating agent used since the 1950s. It directly at-
tacks cancer cells by cross-linking guanine bases on DNA strands and binding to cysteine
molecules in histone proteins, leading to DNA-protein cross-links. BU also increases
oxidative stress in cancer cells by interacting with sulthydryl groups of glutathione (13).
While its primary effect is on myeloid cells, it is extremely toxic to hematopoietic cells,
leading to broad myelosuppressive effects. High doses result in myeloablation, while
repeated doses deplete BM precursors (14). [Supplement 1]

Bendamustine

Bendamustine (BEN) is an alkylating agent classified as a nitrogen mustard analog with
concomitant alkylating and antimetabolite properties. This dual activity creates a unique
pattern of cytotoxicity compared to conventional alkylating agents. BEN induces cell de-
ath via apoptotic and non-apoptotic pathways, affecting cancer cells even when they lack
a functional apoptotic pathway. As a bifunctional alkylating agent, it forms interstrand
and intrastrand DNA cross-links, leading to cell apoptosis. BEN also induces a more com-
plex repair process, making cells more susceptible to damage. In vitro, BEN demonstrates
partial cross-resistance with other alkylating agents (15). [Supplement 2]

Cyclophosphamide

Cyclophosphamide (CY) is a non-cell-cycle phase-specific nitrogen mustard agent that
works through the alkylation of DNA. It is metabolized by liver enzymes (mainly cyto-
chrome P450) to produce the active alkylating agent phosphoramide mustard and acro-
lein. The phosphoramide metabolite inhibits protein synthesis by forming DNA-RNA
cross-links, while acrolein is responsible for the common adverse effect of hemorrhagic
cystitis. CY also has selective immunosuppressive effects on T cells. High doses are used
for eradicating malignant hematopoietic cells, while lower doses are preferred for immu-
nomodulation (16). [Supplement 3]



INTRODUCTION 17

Melphalan
Melphalan (MEL) is an antineoplastic alkylating agent derived from nitrogen mustard.
It interferes with DNA and RNA synthesis by cross-linking interstrand guanine bases
in DNA. Cytotoxicity is related to the extent of cross-link formation. As a bifunctional
alkylating agent, MEL is effective against resting and rapidly dividing tumor cells (17).
[Supplement 4]

Thiotepa

Thiotepa (TT) is a chemotherapeutic alkylating agent related to nitrogen mustard. It in-
terferes with DNA and RNA synthesis by alkylating the guanine base and forming cross-
links within DNA strands (18). [Supplement 5]

Topoisomerase Inhibitors

Etoposide

Etoposide (ETO) is a semi-synthetic topoisomerase II inhibitor that primarily affects the
late S and G2 phases of the cell cycle. Topoisomerase II normally cuts and reseals dou-
ble-stranded DNA during replication. ETO inhibits this process by poisoning the topoiso-
merase II cleavage complexes, preventing DNA re-ligation. This mutagenic pathway is
most effective in tumor cells with high levels of topoisomerase 11 (19). [Supplement 6]

Nucleoside Analogs

Cytarabine

Cytarabine (also known as arabinosylcytosine or ARA-C) is a pyrimidine analog that is
converted into its triphosphate form, which competes with cytidine for incorporation into
DNA. This interrupts DNA replication during the S phase of the cell cycle, making cyta-
rabine effective against rapidly dividing cells like cancer cells. Cytarabine also inhibits
DNA polymerase, further preventing replication and repair. To maintain efficient intracel-
lular levels, bolus doses are administered at 8 to 12-hour intervals (20). [Supplement 7]

Fludarabine

Fludarabine (FLU) is an antimetabolite that inhibits ribonucleotide reductase. As a pro-
drug, it is rapidly converted to F-ara-A, which is further phosphorylated to generate 2-flu-
oro-ara-ATP. This metabolite blocks DNA synthesis by inhibiting ribonucleotide reducta-
se, DNA primase, and DNA polymerase alpha. FLU also decreases p27kip1 expression,
leading to apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. It induces
immunosuppression by inhibiting the phosphorylation of STAT1 (21). [Supplement 8]
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Platinum Compounds

Carboplatin

Carboplatin (CBDCA) is a second-generation platinum compound and a cisplatin analog.
It works similarly to cisplatin by inducing DNA adduct formation and interstrand cross-
linking. However, CBDCA has a different toxicity profile, which is generally considered
to be an improvement over cisplatin. Despite this, CBDCA is more myelotoxic than cis-
platin (22). [Supplement 9]
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GRAFT VERSUS HOST
DISEASE PROPHYLAXIS

Graft-versus-host disease (GVHD) is the leading cause of non-relapse mortality (NRM)
beyond day 100 in patients who have undergone hematopoietic stem cell transplantation
(HSCT) from human leukocyte antigen (HLA)-matched sibling donors (MSDs). It is also
the second most common cause of NRM in matched unrelated donor (MUD) recipients.
The incidence of GVHD is significantly higher following myeloablative conditioning
(MAC) regimens than reduced-intensity conditioning (RIC) regimens. Specifically, grade
II-IV acute GVHD incidence ranges from 25% to 50%, while grade III-IV acute GVHD
occurs in 5% to 20% of cases. Furthermore, chronic GVHD following MAC can affect
15% to 65% of patients (22).

The development of GVHD is more common in pediatric patients, with approximately
50% of pediatric transplants performed for non-malignant disorders. In these cases, tissue
repair defects can influence the development of GVHD, as seen with the increased inci-
dence of acute GVHD in patients with Fanconi anemia. Additionally, the high frequency
of typically transient viral erythema in children can be mistaken for manifestations of
acute GVHD, complicating diagnosis. Therefore, there is a clear need for the develop-
ment of GVHD symptom scales and assessment tools specifically tailored to the pedia-
tric population (23, 24). The grading criteria for acute GVHD are well-established for
the skin, liver, and gastrointestinal (GI) tract, with higher grades associated with poorer
transplant outcomes. The Mount Sinai Acute GVHD International Consortium (MAGIC)
has developed consensus guidelines that offer more precise definitions for acute GVHD
organ staging (Table 2&3). Notably, the MAGIC group has introduced the concept of
diagnostic confidence levels for acute GVHD, categorizing cases as “confirmed,” “pro-
bable,” “possible,” and “negative.” These levels correspond to histological confirmation,
initiation of treatment, resolution without therapeutic intervention, and definitive alter-
native histological diagnosis, respectively (25, 26).
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Table 3. MAGIC Criteria for Overall Severity Grading

Overall Grade MAGIC Criteria
0 No organ involvement (skin= 0; and liver= 0; and GI= 0) corre-
sponds to the absence of acute GVHD
I Stage 1-2 skin without liver, upper GI or lower GI involvement
I Stage 3 skin and/or stage 1 liver and/or stage 1 upper GI and/or
stage 1 lower GI
1 Stage 2-3 liver and/or stage 2-3 lower GI, with stage 0-3 skin and/
or stage 0-1 upper GI
v Stage 4 skin, liver or lower GI, with stage 0-1 upper GI

GI: gastrointestinal, GVHD: grafi-versus-host disease
The overall acute GVHD grade typically corresponds to the highest grade conferred by the individual staging
of each organ.

Current Standard Approaches

The most common backbone for GVHD prophylaxis is the combination of a calcineurin
inhibitor (CNI) and an antimetabolite. The CNIs used in this context include tacroli-
mus (TAC) and cyclosporine A (CSA), while the antimetabolites consist of methotrexate
(MTX) and mycophenolate mofetil (MMF) (27). The combination of CSA and MTX
remains the gold standard prophylaxis regimen and is the most widely used approach in
Europe today, particularly following MAC regimens (21). Various MTX schedules are
employed, ranging from the standard initial regimen of 15 mg/m? on day +1 and 10 mg/
m? on days +3, +6, and +11 to reduced dosing strategies, such as omitting the day +11
dose in cases of grade III/IV mucositis (28).

Cyclosporine

Mechanism of Action: CSA acts as a CNI to suppress cell-mediated immune responses
through several mechanisms, including the inhibition of interleukin (IL) synthesis (e.g.,
IL-2, which is crucial for T lymphocyte activation and differentiation). It also inhibits
CD4+ CD25+ regulatory T cells (Tregs) and disrupts host immune tolerance. Additional-
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ly, CSA is a major substrate of cytochrome P450 3A4 and P-glycoprotein/ABCB1, with
at least 25 known metabolites (25).

Dosage Forms: CSA is available in both intravenous (IV) and oral formulations. Oral
products are offered as oral solutions and capsules, which are available in both modified
and non-modified forms. These forms are not bioequivalent and should not be used in-
terchangeably. Some IV formulations of CSA, as well as certain oral products, contain
polyoxyethylated castor oil, which is commonly associated with anaphylactoid hypersen-
sitivity reactions (26). Additionally, some dosage forms may contain propylene glycol,
which, in larger amounts (e.g., >3000 mg/day), is associated with potentially fatal toxici-
ties in neonates (23). Other products may also contain corn oil and/or ethanol (24).

Dosing: For infants, children, and adolescents, the initial dose of CSA IV formulation
is typically 3-5 mg/kg/day [based on total body weight (TBW)], administered in 2 divided
doses every 12 hours. The starting time differs upon protocol variations. Once tolerated,
the IV formulation can be substituted with the oral formulation using an intravenous-to-
oral ratio of approximately 1:2. CSA may also be cautiously initiated at a lower dose of
1.5 mg/kg/day [TBW] in the presence of population-specific pharmacokinetic (PK) varia-
tions. The dose may be adjusted to achieve the target trough concentrations (Co) through
therapeutic drug monitoring (TDM) using whole blood sampling.

Therapeutic Drug Monitoring: Blood samples should be collected 12 hours after
the administered dose and immediately before the next dose at steady-state, as this is the
accepted method for monitoring. For optimal GVHD prophylaxis, the target Co should be
maintained within the range of 200 to 300 ng/mL during the first three to four weeks. In
the absence of GVHD, the target concentration is adjusted to 100 to 200 ng/mL until three
months post-HSCT. After this period, dose reduction or tapering is considered if GVHD
has not occurred (27).

Pharmacokinetics: The oral absorption of CSA is influenced by various gastric fac-
tors, including the presence of food, bile acids, and GI motility. Modified oral formula-
tions are typically absorbed up to 30% more efficiently than non-modified products, as
they are less affected by these gastric factors. Pediatric patients may require larger oral
doses due to shorter bowel length, which limits absorption. The bioavailability of oral
CSA, particularly with non-modified formulations, is dependent on both population fac-
tors and transplant type. Non-modified formulations tend to have lower bioavailability in
HSCT recipients, who often experience GI dysfunction. For instance, the bioavailability
of non-modified oral products is approximately 28% (range: 17-42%) compared to 43%
(range: 30-68%) for modified formulations in pediatric patients. The bioavailability of
oral solutions and capsules under the same trade name is equivalent. After oral admi-
nistration, non-modified formulations typically reach peak plasma concentrations in 2-6
hours, although some patients may experience a second peak between 5-18 hours. Modi-
fied formulations peak earlier, usually within two hours (based on renal transplant data).
CSA is extensively metabolized in the liver by cytochrome P450 3A4, with a significant
first-pass effect following oral intake. The drug’s elimination is biphasic and varies bet-
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ween modified and non-modified formulations. In general, children eliminate CSA more
rapidly due to higher metabolic and clearance rates. In contrast, hepatic impairment can
delay elimination, and severe liver dysfunction may lead to significantly increased CSA
exposure. The drug is primarily excreted in the feces, with approximately 6% excreted in
the urine (24).

Toxicity: CSA can be nephrotoxic, neurotoxic, and cardiotoxic, and may also cause
metabolic adverse events and an increased risk of infection (25). Among its various to-
xicities, acute nephrotoxicity, hepatotoxicity, neurotoxicity, gingival overgrowth, hyper-
tension, and hyperkalemia are major dose-related or dose-dependent adverse effects.
Thrombotic microangiopathy (TMA), malignancies, and chronic nephrotoxicity are both
dose- and time-related.

Drug-induced gingival overgrowth is more common with CSA than TAC and may be
reversible upon discontinuation of the medication. It typically occurs within the first 3
months of therapy.

CSA-associated TMA can have a variable onset and may lead to multi-organ impair-
ment. Early detection and appropriate supportive care, along with dose reduction or di-
scontinuation, may allow for recovery.

Hepatotoxicity with CSA results from impaired bile acid flow and is primarily cha-
racterized by hyperbilirubinemia. It has a variable onset and usually resolves with dose
reduction.

Hyperkalemia, related to the pharmacological mechanism of CNIs, is class-dependent
but tends to be less severe and shorter in duration with CSA compared to TAC. Concomit-
ant drugs should be considered to address hyperkalemia and its complications.

Hypertension is more prevalent with CSA than TAC. The onset is variable, and this
complication can occur even with therapeutic doses.

Regarding malignancies, CSA has been shown to have a lower risk of malignant lym-
phoma compared to TAC in several studies.

Nephrotoxicity can occur even at therapeutic doses of CSA, but the risk increases with
higher doses and longer therapy duration. Both acute and chronic nephrotoxicity are asso-
ciated with CNIs and are more common with CSA than TAC. Acute nephrotoxicity, cha-
racterized by a moderate increase in serum creatinine and elevated CSA trough levels in
the absence of other significant causes of acute kidney injury, is generally reversible with
dose reduction or discontinuation. In contrast, chronic nephrotoxicity tends to be progres-
sive and irreversible. The median onset for acute nephrotoxicity is about 6 months, while
chronic nephrotoxicity typically manifests after 3 years.

Neurotoxicity is less common with CSA than with TAC, but it can range from mild to
severe. A rare but important reversible neurological side effect of CNIs is posterior rever-
sible encephalopathy syndrome (PRES), which is often due to higher peak concentrations
resulting from IV administration, drug interactions, or altered PKs (e.g., altered drug me-
tabolism/clearance, fluid overload, or GVHD). PRES may improve with dose reduction
or discontinuation of therapy (24).
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In cases of overdose, there is no known antidote for CSA, and hemodialysis removes
only about 1% of the dose. Monitoring serum CSA levels is essential, and dose adjust-
ments based on Co, followed by TDM, should be considered. In some cases, activated
charcoal may be useful (28).

Dose Modification

¢ Renal Impairment

Renal impairment does not significantly alter the PKs of CSA; therefore, no dose ad-
justment is necessary for pre-existing kidney impairments. However, in patients with
a creatinine clearance (CrCl) <60 mL/min, it is advisable to target the lower end of the
therapeutic range and avoid concurrent nephrotoxic drugs whenever possible. In cases
of nephrotoxicity during treatment, although a specific dose-reduction strategy based
on serum creatinine increase may be recommended for non-transplant indications, no
general guidelines exist for dose adjustment in the post-HSCT population.

CSA is not dialyzable, and no specific dose adjustments or supplemental doses are
required during hemodialysis, peritoneal dialysis, continuous renal replacement thera-
py (CRRT), or prolonged intermittent renal replacement therapy (PIRRT).

Hepatic Impairment
No dose modification is required in cases of hepatic impairment (24).

¢ Obesity
There is insufficient data on CSA dose adjustments for obese patients. For lipophilic
agents like CSA, it is believed that maintenance levels can be achieved similarly to
those in normal-weight patients when initial dosing is based on adjusted ideal body
weight (ABW) in conjunction with TDM (29).

Tacrolimus

Mechanism of Action: As a CNI, TAC works by inhibiting T-cell proliferation through
binding to FK506 binding protein. TAC is metabolized via the cytochrome P450 3A4,
cytochrome P450 3A5, and P-glycoprotein/ABCB1 pathways, breaking down into fifteen
possible metabolites, with 13-O-dimethyl-tacrolimus being the primary metabolite (30).

Dosage Forms: TAC is available in various IV and oral formulations. Extended-re-
lease (ER), once-daily oral products are not interchangeable with each other due to diffe-
rences in bioavailability and cannot be substituted for immediate-release TAC (which is
intended for twice-daily administration). IV formulations may be administered via con-
tinuous or intermittent infusion. ER oral products should be taken on an empty stomach.
Oral products contain lactose, while IV formulations contain dehydrated alcohol USP
80% and polyoxyl 60 hydrogenated castor oil (HCO-60), similar to polyoxyethylated
castor oil, which has been associated with hypersensitivity reactions, including anaphy-
laxis (31).

Dosing: For GVHD prevention, IV TAC may be initiated with either 0.03 mg/kg/day
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[based on lean body weight (LBW)] as a continuous infusion or 0.015 mg/kg/dose every
12 hours as a 2-hour infusion, with different starting times upon protocol variations. It
should be converted to immediate-release oral formulations as soon as possible, using a
1:4 ratio, and administered in two divided doses, 12 hours apart. Dose adjustments should
be made based on TDM using whole blood samples to achieve the appropriate Co (data
from the adult population). For treating GVHD, TAC can be administered orally with
0.06 mg/kg twice daily using immediate-release tablets, or IV with 0.03 mg/kg/day [ba-
sed on LBW] as a continuous infusion (data from the adult population).

Therapeutic Drug Monitoring: Samples should be taken immediately before the
next dose at steady-state, which is the accepted measure for monitoring. For optimal
GVHD prophylaxis, the target Co should be maintained within the range of 3 to 12 ng/mL
during the first three to four weeks. In the absence of GVHD, the target concentration is
adjusted to 8 to 12 ng/mL until three months post-HSCT. After this period, dose reduction
or tapering is considered if GVHD has not occurred. Younger children typically require
higher maintenance doses based on LBW (32).

Pharmacokinetics: The oral absorption of TAC varies between 5% and 67%. Food,
particularly high-fat meals, reduces the rate and extent of absorption by approximately
27%. This effect may be more pronounced in HSCT recipients with oral mucositis. Bio-
availability is incomplete and varies between patients. Oral formulations typically peak
within 0.5 to 6 hours after intake. TAC is extensively metabolized in the liver via cyto-
chrome P450 3A4. Elimination differs between immediate-release and ER formulations
and is also dependent on the type of transplant. TAC is primarily excreted in the feces,
with about 7% excreted in the urine. Children eliminate TAC more rapidly due to higher
metabolic clearance. Severe hepatic impairment may prolong the drug’s elimination, and
vice versa.

Toxicity: TAC may cause cardiotoxicity, nephrotoxicity, neurotoxicity, metabolic
adverse effects, and increase the risk of infections. Among its varied toxicities, acute
nephrotoxicity, hepatotoxicity, neurotoxicity, gingival overgrowth, hypertension, and hy-
perkalemia are dose-related or dose-dependent. TMA, malignancies, and chronic nephro-
toxicity are both dose- and time-related.

Similar to other CNIs, TAC can lead to both acute and chronic nephrotoxicity, but with
a lower incidence compared to CSA. TAC-related nephrotoxicity typically presents as
acute renal failure, which may be associated with serum concentration levels >20 ng/mL.
Close monitoring of serum creatinine, glomerular filtration rate (GFR), and urine output
is necessary, and this form of nephrotoxicity is generally reversible. In contrast, chronic
nephrotoxicity is structural and irreversible.

TAC may also cause cardiotoxicity, particularly in the case of myocardial hypertrophy,
necessitating dose reduction or discontinuation. Neurotoxicity, more common with IV
administration or immediate-release oral formulations of TAC, should also lead to dose
reduction or discontinuation. The drug should be discontinued if pure red cell aplasia
(PRCA) is diagnosed.

There is no known antidote for TAC in the event of overdose, and hemodialysis does
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not significantly remove the drug. Serum TAC levels should be monitored closely, and
dose adjustments based on Co, followed by TDM, should be considered (30).

Dose Modification
* Renal Impairment
Renal impairment does not affect the PKs of TAC, but the drug itself can cause ne-
phrotoxicity, which may require dose reduction. In patients with pre-existing kidney
impairment, TAC should be initiated at the lower end of the dosing range.

TAC is not significantly dialyzable, and no specific dose adjustments or supple-
mental doses are needed in patients undergoing hemodialysis, peritoneal dialysis, or
CRRT.

* Hepatic Impairment
No dose adjustment is necessary in cases of mild hepatic impairment. However, clo-
se monitoring of serum levels is recommended for patients with moderate to severe
hepatic impairment. Due to reduced clearance, dose reduction may be considered for
severe impairment (31).

* Obesity
Reduced TAC clearance has been observed in obese patients, and dosing should be
adjusted based on ideal body weight (IBW) or LBW at the initiation of therapy (data
from renal transplantation) (33).

Methotrexate

Mechanism of Action: MTX is widely used for various malignancy and non-malignancy
indications, with distinct mechanisms of action. As a folate antimetabolite used to prevent
acute GVHD, both MTX and its metabolite, methotrexate-polyglutamate, inhibit the en-
zyme dihydrofolate reductase and interfere with the production of purine and thymidylate
synthase, thereby inhibiting DNA synthesis and suppressing T-cell responses (28).

Dosage Forms: MTX is included in GVHD prophylaxis protocols as an injectable
solution, which is administered intravenously either as a slow push over approximately 1
minute (10 mg/min) or as a bolus infusion over 30 minutes to 1 hour. The solution shoul
be diluted with 0.9% sodium chloride or 5% dextrose water to a concentration of <25 mg/
mL before administration.

Dosing: For GVHD prevention, MTX is administered as either a standard or mini-do-
se, depending on patient-specific factors and protocol variations. For standard dosing, 15
mg/m?/dose [body surface area (BSA) based on total body weight (TBW)] is administe-
red on day 1 after HSCT, followed by 10 mg/m*/dose on days 3, 6, and 11, depending on
protocol variations. Mini-doses are administered as 10 mg/m?/dose on day 1 after HSCT,
followed by 6 mg/m?/dose on days 3, 6, and 11. Therapeutic MTX is administered follo-
wing GVHD in weekly doses of 3—10 mg/m?/dose until GVHD resolves. Although not
considered high-dose, leucovorin is recommended to prevent toxicities (34, 35).

Therapeutic Drug Monitoring: TDM is not needed for standard and mini-dose ad-
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ministration.

Pharmacokinetics: PK data are limited, particularly in pediatric populations. MTX
slowly penetrates third-space fluids and remains there longer than in plasma. With ap-
proximately 50% protein binding, MTX is metabolized by hepatic aldehyde oxidase and
excreted primarily unchanged in the urine. Therefore, renal impairment may increase
serum MTX levels (35).

Toxicity: Most known side effects of MTX are associated with high doses or chronic
use. However, nausea, vomiting, and mucositis are the most common adverse events ob-
served at doses used for GVHD prevention (36). Doses exceeding 10 mg/m? are typically
classified as moderate to high risk for these side effects (35).

Drug Interactions: MTX is highly bound to plasma proteins, so interactions with
drugs that displace MTX from these proteins can increase blood levels. Additionally, any
drug that affects the renal clearance of MTX can lead to an increase in its concentration.

Nonsteroidal anti-inflammatory drugs (NSAIDs), salicylates, proton pump inhibi-
tors (PPIs), CSA, trimethoprim (TMP), penicillin, warfarin, valproate, and cisplatin are
known to increase the risk of MTX toxicity by elevating its blood concentration. Con-
versely, aminoglycosides, neomycin, and probenecid can reduce the absorption of MTX.
The most significant and serious interactions are with NSAIDs and PPIs, as these are
commonly used therapeutic agents.

Leucovorin, thymidine, and glucarpidase are three known antidotes for MTX toxicity,
along with hydration and urine alkalinization. For low-dose MTX, leucovorin therapy is
recommended. In cases of very high MTX levels, hemodialysis and hemoperfusion may
also be beneficial (37).

Dose Modification

* Renal Impairment
In cases of renal impairment, no dose adjustment is necessary when the creatinine
clearance (CrCl) is >50 mL/min/1.73m?. For CrCl between 10 and 50 mL/min/1.73m?,
a 50% dose reduction is required, and for CrCl <10 mL/min/1.73m?, administration of
30% of the dose is recommended. For patients undergoing hemodialysis or peritoneal
dialysis, administration of 30% of the dose is required, and for CRRT, MTX should
be administered at half the standard dose.

* Hepatic Impairment
No specific dose modifications are recommended for hepatic impairment in pediatric
patients. However, in adults with a bilirubin level of 3.1-5 mg/dL or transaminases >3
times the upper limit of normal, administration of 75% of the dose is recommended.
MTX should be avoided in patients with bilirubin levels >5 mg/dL.

* Obesity
In obese patients with a body mass index (BMI) >30 kg/m?, the initial dosing or any
dose modifications should be calculated using TBW (35).
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Mycophenolate Mofetil

Mechanism of Action: MMF is a prodrug that reversibly inhibits inosine-5’-monophos-
phate dehydrogenase (IMPDH) through its active metabolite, mycophenolic acid (MPA).
By blocking DNA synthesis and cell division in T and B lymphocytes, MMF suppresses
both cellular and humoral immune responses without significant additive side effects
(38). MMF is generally reserved for non-myeloablative (NMA) and reduced-intensity
conditioning regimens, as well as a replacement for antimetabolites in MAC (39).

Dosage Forms: MMF is available in various oral and parenteral forms. These pro-
ducts are not equivalent to each other or to mycophenolate sodium formulations. Some
products may contain polysorbate 80 (also known as Tween), which can cause delayed
allergic reactions. Additionally, some formulations contain phenylalanine and should be
avoided in patients with specific metabolic disorders.

Dosing: Dosing data are primarily based on adult protocols and are used in children
with limited evidence, although they are generally well-tolerated. MMF may be initiated
either intravenously or orally, depending on the patient’s tolerability. The dosing regimen
can vary by protocol, with options including 15 mg/kg/dose every 12 hours starting on
day 0 of HSCT or 10—-15 mg/kg/dose every 8§ to 12 hours beginning on day 0 or day +1.
Doses may be adjusted in cases of toxicities or co-administration of CNIs. Additionally,
the protocol may be individualized based on factors such as the risk of relapse or GVHD.
Generally, MMF is administered for approximately 1 month in matched related donor
transplants and 2—3 months in matched unrelated donor transplants. In haploidentical
HSCT, it is typically administered as thrice-daily dosing (39, 40).

Therapeutic Drug Monitoring: Although TDM is recommended for optimizing
MMF in GVHD prevention, no universally accepted sampling approach is available.
TDM targets the area under the concentration-time curve (AUC) of MPA, the active me-
tabolite, with a therapeutic target range of 30-60 mgxh/L for AUCo—12 (>40 mgxh/L
according to some studies). Whole blood sampling is required just before the dose and at
least 3 days after initiating the drug or making dose modifications to reflect steady-state
concentrations (41).

Pharmacokinetics: MMF is rapidly and well-absorbed, with approximately 50% lo-
wer AUC values of MPA during the first-month post-HSCT compared to later periods (>3
months). MMF demonstrates a bioavailability of 94% with oral administration relative to
the IV form. It is metabolized via both the GI tract and the liver, where it is hydrolyzed
to MPA, which has a protein-binding rate of 97%. MPA may further concentrate through
enterohepatic recirculation and is glucuronidated to an inactive metabolite with 82% pro-
tein binding. The time-to-peak concentration of MPA varies depending on dosing and
indications and has been reported in a range of 0.8 to 1.8 hours following oral intake.
Finally, MPA is primarily excreted as the glucuronidated form in urine (>60%) and to a
lesser extent as MPA in urine and feces (<1% and 6%, respectively). Severely impaired
renal function (GFR <25 mL/min/1.73m?) may increase the AUC of MPA by 75% and its
glucuronidated form by 3- to 6-fold.
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Toxicity: Administration of MMF may lead to various infections, GI effects, bone
marrow (BM) suppression, lymphoproliferative disorders, PRCA, and acute inflammato-
ry syndrome (AIS) as the most significant adverse reactions.

The risk of infections correlates with the immunosuppressive effects of MMF and may
manifest as a variety of severe bacterial, viral, fungal, and protozoal infections. In cases
of reported viral infections associated with MMF, nephropathy and kidney deterioration
may result from the activation of polyomavirus, which can further activate the BK virus.
The GI tract may also be affected by cytomegalovirus (CMV) activation, leading to sym-
ptoms such as diarrhea. Progressive multifocal leukoencephalopathy (PML) may occur
as a result of JC virus infection. Reactivation of hepatitis B virus (HBV) and hepatitis C
virus (HCV) may also occur, as well as coronavirus disease 2019 (COVID-19) infection.
The majority of these infections occur within the first 180 days, and the risk is associated
with any form of immunosuppression, including the concomitant administration of other
drugs or preexisting impairments, as well as increased exposure to the drug itself.

GI effects are among the most common adverse effects associated with MMF and
include diarrhea, abdominal pain, nausea, and vomiting. Dyspepsia, constipation, flatu-
lence, and loss of appetite may also occur but are less prevalent. GI ulcers, hemorrhage,
and perforation are rare but possible. Some of these GI symptoms may also result from
infections, which are among the other common adverse events associated with MMF. The
onset of these reactions varies widely, ranging from 1 month to 10 years. The condition
is more closely associated with non-enteric-coated formulations, concomitant administ-
ration of CNIs, and increased MMF exposure, and it is more prevalent among females.

BM suppression caused by MMF is reversible and most commonly manifests as an-
emia, thrombocytopenia, or leukopenia. Severe neutropenia may increase the risk of
infections. These complications typically have a delayed onset and are associated with
increased drug exposure and the concomitant use of other agents that cause BM suppres-
sion.

Lymphoproliferative disorders and neoplasms may occur with MMF therapy, with a
delayed onset ranging from months to years after initiation. The highest probability is
within the first year post-transplant due to intense immunosuppression. The risk is also
higher in pediatric transplant recipients, as they are more likely to be Epstein—Barr virus
(EBV) seronegative at the time of transplantation. Other risk factors include concomitant
immunosuppression (due to other medications or preexisting impairments), pre-trans-
plant malignancies, less HLA matching, a history of rejection, and age <25 or >60 years.
Skin carcinoma is also associated with ultraviolet (UV) exposure.

PRCA is a type of anemia with a wide range of severity and has been reported in
patients receiving concomitant MMF and other immunosuppressive agents. PRCA has a
delayed onset and is characterized by fatigue, lethargy, and pallor.

MMF-induced AIS is reversible and characterized by fever, arthralgia, myalgia, and
increased inflammatory markers. The onset of AIS varies from weeks to months after
therapy initiation or dose increases and typically improves within 24 to 48 hours of di-
scontinuing the drug.
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MMF toxicity may result in hematologic adverse events, and dose interruption or re-
duction should be considered in cases of anemia or an absolute neutrophil count (ANC)
<1.3 x 10%/uL.

Dose Modification

* Renal Impairment
Reports in pediatric patients are limited to kidney transplantation, which suggests
avoiding doses >1000 mg/dose twice daily in cases of severe chronic renal impair-
ment with a GFR <25 mL/min/1.73m?, particularly with non-enteric-coated formu-
lations. Dose modification is not required for GFR >25 mL/min/1.73m? or with ent-
eric-coated formulations. Based on adult considerations, no dose modifications are
recommended during the immediate post-transplant period, as this may increase the
risk of GVHD or rejection.

MMEF is not removed by hemodialysis and supplemental doses are not required in

hemodialysis and peritoneal dialysis.

* Hepatic Impairment
An increased free fraction of MPA may result from displacement in cases of hyper-
bilirubinemia and/or hypoalbuminemia and should therefore be monitored. However,
dose modifications are not recommended (39)

e Obesity
No specific dose adjustment is available.

T-Cell Depletion

Given that acute GVHD is primarily mediated by effector T-lymphocytes, prophylactic
strategies have concentrated on suppressing T-cell activity in the recipient.

T-cell depletion (TCD) or modulation in vivo has formed the foundation for several
innovative GVHD prophylaxis strategies. An effective TCD of the graft could potentially
prevent both acute and chronic GVHD, even in cases where the donor/recipient pair dif-
fers at more than two major HLA loci.

Ex-Vivo T-Cell Depletion/Modulation

Recent advances in ex vivo techniques for T-cell removal have progressed from selecting
CD34+ hematopoietic stem cell (HSC) progenitors (using megadoses of CD34+ cells)
to depleting CD3+ cells, CD34+/CD19+ cells, and more recently, CD3+T-cell receptor
(TCR)-0f and naive (CD45RA+) T-cells (Table 4) (34, 35, 37, 38). While the risk of
GVHD decreases with commonly used graft manipulation methods such as CD34+ selec-
tion, concerns about delayed immune recovery and viral clearance persist (39-42). Newer
approaches, such as TCR-of8 TCD, have been shown to reduce GVHD while preserving
v6 T cells in the graft, which may facilitate early immune reconstitution and enhance
viral or tumor clearance following transplantation. Recent studies have demonstrated the
beneficial effects of this strategy in both malignant and non-malignant disorders (43).
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In-Vivo T-Cell Depletion/Modulation

Novel GVHD prophylaxis strategies have emerged by integrating in vivo depletion tech-
niques into regimens that combine CNIs with monoclonal antibodies, such as anti-thy-
mocyte globulin (ATG) or alemtuzumab, which directly target T cells within the body.

Rabbit-Derived Anti-Thymocyte Globulin

Mechanism of Action: ATG is a polyclonal antibody that induces immunosuppression by
clearing T cells from circulation. It acts on surface antigens, leading to activation-induced
apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-de-
pendent cytotoxicity (CDC). ATG also modulates T-cell activation, homing, and cytotoxi-
city (42-46). Among the two commercially available polyclonal antibodies—equine-de-
rived and rabbit-derived—which exhibit different biological activities, the rabbit-derived
antibody has demonstrated optimal effects at lower doses, higher specificity for human T
lymphocytes, and a considerably longer half-life (47).

Dosage Forms: ATG is available as a reconstituted solution for IV administration.
Dosing may vary among different rabbit-derived products. Additionally, rabbit-derived
and equine-derived products are not interchangeable (48).

Dosing: Due to the high incidence of serious infusion reactions, premedication is re-
quired 1 hour before administration. Corticosteroids, acetaminophen, and/or an antihist-
amine are being used as pretreatment. For infants, children, and adolescents, protocols
variable and a dose range of 4.5-15 mg/kg is reported as the total dose which is divided
into 3 to 5 once-daily and consecutive pre-HSCT doses. A 2.5 mg/kg once-daily dose is
generally initiated and differs in the total number of doses upon protocol variations due to
the type of HSCT, underlying disease, and source of transplant (49-55). [Supplement 10]

Therapeutic Drug Monitoring: This is not needed.

Pharmacokinetics: Based on adult data, T-cell depletion is expected within 24 hours.
Antithymocyte globulin (rabbit derived) has 2-3 days half-life of elimination and the lym-
phopenia might continue for up to 1 year (56). Two phases of clearance were observed in
pediatrics for both the total and active form of the drug (47).

Toxicity: Hematologic and laboratory abnormalities (including increased potassium
levels, and lower WBC and platelets counts), urinary tract infection, gastrointestinal ad-
verse events (including abdominal pain, constipation, diarrhea, and nausea), cardiovascu-
lar effects (including hyper- or hypotension, peripheral edema, and tachycardia), neuro-
muscular symptoms (e.g., Arthralgia/myalgia, asthenia, and back pain), nervous system
reactions (including headache, anxiety, chills, malaise, insomnia, and pain), respiratory
side effects (including dyspnea and upper and lower respiratory tract infections), as well
as fever and infections (i.e., cytomegalovirus reactivations and sepsis) are among the
most common adverse reactions of the rabbit derived antithymocyte globulin (42, 48).

Not very common, but serum sickness may also occur with arthralgia/myalgia, lym-
phadenopathy, proteinuria, and decreased oxygen saturation in the 5 to 15 days after the
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antithymocyte globulin administration. Corticosteroid treatment resolves the symptoms
(42).

Serious hypersensitivity reactions (i.e., anaphylaxis) are probable with antithymocyte
globulin and lead to discontinuation of therapy.

Infusion reactions are common due to cytokine release. The first dose should be infu-
sed over 6 hours, and subsequent doses may be administered over 4 hours. All infusions
should be delivered through a high-flow vein via a central line, using an in-line 0.22-mi-
cron filter, and accompanied by premedication. In cases of mild to moderate infusion
reactions, the infusion rate should be reduced (48).

Overdose may result in leukopenia and/or thrombocytopenia and is managed through
dose reduction (42).

Dose Modification
* Renal Impairment
No specific dose adjustment is available.
* Hepatic Impairment
No specific dose adjustment is available.
* Obesity
No specific dose adjustment is available.

Alemtuzumab

Mechanism of Action: Alemtuzumab is a humanized monoclonal antibody that binds
to the CD52 antigen on T cells, thereby inducing cell death through CDC, ADCC, or
apoptosis (57).

Dosage Forms: Alemtuzumab is available as a solution for IV administration. The
product may contain edetate disodium dihydrate and polysorbate 80. Thrombocytopenia,
ascites, pulmonary deterioration, and hepatic or renal impairment have been reported
following IV administration of products containing polysorbate 80 in premature neonates
(58). Hypersensitivity reactions have also been associated with polysorbate 80 (59-61).

Dosing: Alemtuzumab is used off-label for the treatment of acute, steroid-refractory
GVHD. It is administered intravenously over 2 hours at a dose of 10 mg once daily for
5 consecutive days, followed by 10 mg weekly on days +8, +15, and +22 (62); alterna-
tively, 10 mg may be administered weekly until symptoms resolve (63). Alemtuzumab-
containing regimens are associated with a moderate emetic risk, and therefore, proper
prophylaxis is recommended. Alemtuzumab may also cause severe infusion reactions;
thus, premedication with 500-1000 mg acetaminophen and 50 mg diphenhydramine 30
minutes before initiating the infusion is advised. IV glucocorticoids may also be added to
prevent severe reactions (64).

Therapeutic Drug Monitoring: This is not needed.

Pharmacokinetics: Based on data from adult studies, alemtuzumab clearance decrea-
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ses with repeated dosing, and its elimination half-life varies depending on the dosing
protocol and product. For 30 mg doses of Campath®, the half-life is approximately 11
hours (range: 223 hours) after the first dose and 6 days (range: 1-14 days) after the last
dose. For Lemtrada®, the elimination half-life is approximately 2 weeks (64). The poten-
tial effects of preexisting renal or hepatic impairment on alemtuzumab and its metabolic
pathways have not yet been studied.

Toxicity: Alemtuzumab can cause autoimmune encephalitis (symptoms include alte-
red mental status, neurological findings, psychiatric symptoms, and seizures), BM sup-
pression (including severe and prolonged myelosuppression), immune-mediated severe
acute colitis, hemophagocytic lymphohistiocytosis (HLH), acquired hemophilia A, auto-
immune hepatitis, infections, pneumonitis, stroke, cervicocephalic arterial dissection,
thrombotic thrombocytopenic purpura (TTP), and infusion reactions. Other reported ad-
verse reactions are primarily associated with its use in multiple sclerosis treatment.

In cases of BM suppression with alemtuzumab, patients should only receive irradiated
blood products to prevent transfusion-associated GVHD.

Among GI side effects, alemtuzumab commonly induces immune-mediated colitis
with an acute onset. However, the onset of this drug-induced colitis typically ranges from
months to years and may require hospitalization and systemic corticosteroid therapy.

HLH may occur with a reported onset of up to 33 months after initiating alemtuzumab.
It presents with symptoms of extreme systemic inflammation and is considered a life-
threatening adverse event.

Autoimmune hepatitis is a potential adverse effect of alemtuzumab and may result in
severe hepatic injury, potentially requiring transplantation. Serum transaminases and total
bilirubin should be monitored at baseline, during therapy, and for up to 48 months after
the last dose.

Alemtuzumab may cause severe and prolonged lymphopenia, thereby increasing the
risk of infections. Delaying the initiation of therapy should be considered in cases of ac-
tive infections until they are controlled. Screening for latent infections, such as hepatitis
and tuberculosis, should also be considered in high-risk populations. Alemtuzumab is
contraindicated in patients with positive human immunodeficiency virus (HIV) infection,
active tuberculosis disease or infection, or severe active infections. It is also contraindi-
cated in patients with active malignancies, a history of PML, stroke, arterial dissection of
cervicocephalic arteries, angina or myocardial infarction, uncontrolled hypertension, or
known coagulopathy.

Fatal infusion reactions have been reported with alemtuzumab. All patients should be
closely monitored for at least 2 hours after administration. Therapy may be withheld in
cases of severe reactions (grade 3 or 4).

Alemtuzumab may cause stroke or cervicocephalic arterial dissection. Stroke most
commonly occurs within the first day following administration, while cervicocephalic
arterial dissection typically occurs within 3 days (64).
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Dose Modification

¢ Renal Impairment
No specific dose adjustment is available.

¢ Hepatic Impairment
No specific dose adjustment is recommended for pre-existing hepatic impairment.
However, therapy interruption or discontinuation may be necessary in cases of hepatic
impairment that develop during treatment.

* Obesity
Flat dosing is recommended for obese patients with a BMI >30 kg/m? (64).

Post-Transplant Cyclophosphamide

Post-transplant cyclophosphamide (PTCY), first pioneered at Johns Hopkins, is one of
the most groundbreaking approaches in GVHD prophylaxis, especially in T-cell-replete
haploidentical transplant settings. This innovative strategy selectively induces apoptosis
in activated T cells while preserving the viability of resting T cells. By specifically targe-
ting the alloreactive T cells responsible for GVHD, PTCY effectively reduces the risk of
GVHD without compromising overall immune reconstitution (45). The success of PTCY
in haploidentical transplants has paved the way for its broader application in other trans-
plant settings, including matched-related and unrelated donor transplants, contributing to
lower exposure to immunosuppressive drugs after HSCT (46).

New Immunosuppressive Regimens for GVHD Pro-
phylaxis

Sirolimus
Mechanism of Action: Sirolimus (SIR) has unique immunosuppressive properties and is
used for both the prevention and treatment of GVHD. It binds to an intracellular protein
called FKBP-12, forming a complex that inhibits the mechanistic target of rapamycin
(mTOR) regulatory kinase, thereby suppressing T-lymphocyte proliferation (65).
Dosage Forms: Systemic SIR is available in both oral formulations (tablets and oral
solutions) with conventional formulations and as nab-sirolimus for IV administration.
Conventional oral products are primarily used for GVHD. SIR tablets and oral solutions
are not bioequivalent and, therefore, are not interchangeable at doses greater than 2 mg.
Oral solutions may contain alcohol, polysorbate 80, propylene glycol, and glycine soja
(extracted from soybean). Thrombocytopenia, ascites, pulmonary deterioration, and he-
patic or renal impairment have been reported following IV administration of products
containing polysorbate 80 in premature neonates. Hypersensitivity reactions have also
been reported. Large amounts of propylene glycol (e.g., >3000 mg/day) are associated
with potentially fatal toxicities in neonates (23).
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Dosing: For GVHD prevention, SIR may be initiated either as a fixed dose of 2 mg
once daily [TBW] or as a 12 mg loading dose followed by 4 mg once daily (in combi-
nation with TAC) (66-68). Doses are adjusted based on TDM using whole blood samples
to achieve appropriate Co. The timing of initiation may vary depending on the protocol
(data from adult populations).

For the treatment of acute and chronic GVHD, SIR may be administered as a 6 mg
loading dose followed by 2 mg once daily as a maintenance dose, adjusted based on TDM
(data from adult populations) (69, 70).

Therapeutic Drug Monitoring: Samples should be collected 24 hours after the admi-
nistered dose and immediately before the next dose at steady state, as this is the accepted
method for TDM. For optimal GVHD prophylaxis, the target Co should be maintained
within the range of 3 to 12 ng/mL during the first 150 days (66). In the absence of GVHD,
the target concentration is tapered over 365 days post-HSCT (71).

If acute GVHD occurs, the target trough level may be adjusted to a range of 10 to 14
ng/mL until GVHD resolves. Subsequently, the dose should be titrated to achieve a goal
range of 5 to 10 ng/mL for at least 56 days, followed by a taper over 3 months until di-
scontinuation (69).

In cases of chronic GVHD, the target trough level may be adjusted to a range of 7 to 12
ng/mL for 6 to 9 months. All data are derived from adult populations (70).

Pharmacokinetics: SIR is rapidly absorbed, with peak concentrations occurring wit-
hin 1 to 3 hours for the oral solution and within 6 hours for the tablet. These two oral
formulations are not bioequivalent, and tablets are reported to have higher bioavailability
compared to oral solutions (27% vs. 14%). SIR has a high protein-binding capacity of ap-
proximately 92%. The elimination half-life is 13.7 £ 6.2 hours and is shorter in children.
The drug is extensively metabolized by both P-glycoprotein/ABCBI1 (in the intestinal
wall) and cytochrome P450 3A4 in the liver, with the majority excreted in feces. All
grades of hepatic impairment may result in a decreased half-life and increased SIR clea-
rance. Clearance also varies by sex, being approximately 12% lower in males, leading to
a prolonged elimination half-life (72 hours in men versus 61 hours in women).

Toxicity: SIR is potentially associated with hypersensitivity reactions, including ana-
phylaxis, hypersensitivity angiitis, exfoliative dermatitis, hypersensitivity vasculitis, and
angioedema. Angioedema is more commonly associated with elevated SIR levels and the
coadministration of other drugs known to cause this condition. It generally resolves with
dose reduction or discontinuation of therapy.

SIR increases the risk of infections due to its immunosuppressive effects. Prophylaxis
for Pneumocystis jirovecii pneumonia (PJP) should be administered for at least 1 year
to all patients receiving SIR, and CMV prophylaxis should be given for 3 months post-
HSCT. Patients should also be monitored for central nervous system (CNS) symptoms
of JC virus infection, and immunosuppression may need to be reduced in cases of CNS
infections. Additionally, the use of live vaccines should be avoided during SIR therapy.

Higher trough levels of SIR may also lead to pulmonary hypertension, potentially re-
sulting in fatal interstitial lung disease (ILD). This condition typically resolves with dose
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reduction or discontinuation of therapy.

SIR may also cause hyperlipidemia, which is often resistant to pharmacologic thera-
pies and should be managed through non-pharmacologic interventions, such as lifestyle
modifications.

SIR may be nephrotoxic and can elevate serum creatinine levels, particularly when
used concomitantly with other nephrotoxic agents, such as CSA. It may also reactivate
the BK virus, leading to nephropathy.

Fluid accumulation has been associated with SIR and may present as peripheral ede-
ma, ascites, and pleural or pericardial effusion. Patients with preexisting cardiovascular
or pulmonary disease are at higher risk for these adverse events.

SIR is associated with an increased risk of lymphoma and other malignancies. Exposu-
re to UV light should be limited in patients receiving SIR due to the elevated risk of skin
cancers. Impaired wound healing has been reported with SIR use, particularly in obese
patients (72). Growth failure has been rarely reported in children receiving SIR (73).

Dose Modification

¢ Renal Impairment
Dose adjustment is not necessary.

¢ Hepatic Impairment
No specific dose adjustment is required for the loading dose. However, the mainte-
nance dose may be reduced by 33% in cases of mild to moderate hepatic impairment
and by 50% in cases of severe hepatic impairment.

* Obesity

No specific dose adjustment is available.

The side effects of immunosuppressive medications commonly used in pediatric
HSCT are varied and can range from mild to severe. As shown in Table 5, these me-
dications may cause a wide range of toxicities, including nephrotoxicity, neurotoxicity,
GI disturbances, hematologic complications, and increased susceptibility to infections.
Management strategies typically include dose adjustments, discontinuation of therapy,
supportive care, and prophylactic treatments to mitigate the risks associated with these
adverse effects. It is crucial for healthcare providers to closely monitor patients for these
potential side effects to ensure timely intervention and improve patient outcomes.
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Table 5. Common and Serious Side Effects of Immunosuppressive Medications Used in He-
matopoietic Stem Cell Transplantation and Their Management Strategies

Drug Common Side Effects | Serious/Severe Side Effects Management Strategies
;E zﬁ?;)o toxicity (acute & - Monitor renal & liver function
- Hypertension . - Adjust dose for renal function
Cyclospo- . - Hepatotoxicity
. - Hyperkalemia . - Blood pressure management
rine T - Neurotoxicity, PRES
- Gingival overgrowth | TMA - Regular dental care
- Malignancies - Monitor for signs of malignancy
- Nephrotoxicity (acute &
. chronic) . - Monitor renal & liver function
- Hypertension - Hepatotoxicity . .
. . . - Adjust dose for renal function
Tacrolimus | - Hyperkalemia - Neurotoxicity, PRES
T - Regular blood pressure checks
- Gingival overgrowth |- TMA . . .
. . - Monitor for signs of malignancy
- Malignancies
- Overdose risk
Methotre- —Nausea/'v.omltmg - High-dose to>'(1c1ty - Folic acid supplementation
- Mucositis - BM suppression .
xate . . - Monitor for GI symptoms
- Fatigue - GI complications
- BM suppression
- Diarrhea - Lymphoproliferative di-
Mycopheno- | - Nausea sorders - Monitor liver function in hepatitis
late Mofetil | - Abdominal pain - Infections (bacterial, viral, | patients
- Fatigue fungal)
- Reactivation of hepatitis
) ﬁlfﬁlmmune encephalitis - Pre-medicate with antihistamines
. . . and steroids
- Fatigue - Autoimmune diseases (he- . .
Alemtuzu- o o - Monitor for autoimmune re-
- Headache mophilia, hepatitis) .
mab i actions
- Rash - Pneumonitis . . .
- Stroke - Maniage mfectlon? proz.wtlvely
- Infusion reactions - Monitor neurological signs
- Pulmonary hypertension - Monitor cholesterol & triglyceri-
- Hyperlipidemia -ILD des levels
Sirolimus | - Anorexia - Nephrotoxicity - Monitor pulmonary function
- Fatigue - Lymphoma - Adjust dose for renal function
- Wound healing impairment | - Regular screening for lymphoma

BM: bone marrow, GI: gastrointestinal, HLH: hemophagocytic lymphohistiocytosis, ILD: intersti-
tial lung disease, PRES: posterior reversible encephalopathy syndrome, TMA: thrombotic micro-

angiopathy
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SINUSOIDAL 3
OBSTRUCTION

SYNDROME

PROPHYLAXIS

Sinusoidal obstruction syndrome (SOS), also known as veno-occlusive disease (VOD),
is a life-threatening complication that may arise after hematopoietic stem cell transplan-
tation (HSCT), particularly after myeloablative conditioning (MAC) regimens. This con-
dition primarily affects pediatric patients, with an incidence rate of 15-20%, which can
increase to as high as 80% in high-risk individuals. Additionally, the incidence of severe
anicteric SOS/VOD accompanied by multi-organ dysfunction is notably higher in chil-
dren compared to adults, with rates of 74% versus 59%, respectively (74).

In the pediatric setting, there are no distinctions regarding the time of onset, and no
time limitations are specified. The pediatric European Society for Blood and Marrow
Transplantation (EBMT) criteria for diagnosis require the presence of at least two of the
following indicators:

® Unexplained consumptive and transfusion-refractory thrombocytopenia

® An otherwise unexplained weight gain over three consecutive days despite diure-
tic use, or a weight gain of 5% above baseline

® Hepatomegaly (preferably confirmed by imaging) above baseline levels

® Ascites (preferably confirmed by imaging) above baseline levels

¢ Rising bilirubin levels from baseline over three consecutive days, or bilirubin le-
vels >2 mg/dL within 72 hours

Several pharmacological strategies have been explored to prevent SOS/VOD, with ur-
sodeoxycholic acid (UDCA) and defibrotide (DF) being two of the most notable options.

A meta-analysis of three trials comparing UDCA to placebo suggested a potential be-
nefit of UDCA in preventing SOS/VOD (75).

Regarding DF, a phase III randomized trial demonstrated that prophylactic DF signi-
ficantly reduced the incidence of SOS/VOD in high-risk pediatric patients, with rates of
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12% in the DF group compared to 20% in the control group (P= 0.048) (76).

Based on these findings, the British Committee for Standards in Hematology (BCSH)
and the British Society for Blood and Marrow Transplantation (BSBMTCT) recommend
DF use for preventing SOS/VOD in pediatric patients undergoing HSCT who have at
least one risk factor for SOS/VOD (77).

Risk factors include pre-existing hepatic disease, second myeloablative
transplant, allogeneic transplant for leukemia beyond second relapse, con-
ditioning with busulfan-containing regimens, prior treatment with gemtu-
zumab ozogamicin (GO), diagnosis of primary hemophagocytic lympho-
histiocytosis (HLH), adrenoleukodystrophy (ALD) or osteopetrosis.

However, the HARMONY trial, which included both pediatric and adult patients,
found no significant benefit of DF for SOS/VOD prevention compared to best supportive
care. As a result, while DF shows promise in specific populations, its overall efficacy as
a prophylactic agent continues to be investigated (78).

Currently, the Pediatric Diseases Working Party (PDWP) of the EBMT does not re-
commend DF as routine prophylaxis for SOS/VOD due to limited availability and high
cost. Given these constraints, DF prophylaxis is only recommended for very high-risk
patients (previous treatment with GO or inotuzumab, history of prior MAC-HSCT, and
infants below 12 months of age) who are planned to receive a MAC regimen containing
two or more alkylating agents (79).

UDCA: 6 mg/kg twice a day (max: 900 mg/day or 300 mg/dose); from
initiation of conditioning until day +90 after transplantation

DF: 6.25 mg/kg intravenously four times daily; from initiation of condi-
tioning until neutrophil engraftment or discharge, and for at least 14 days
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STEM CELLS 4
MOBILIZATION AND
APHERESIS POLICIES

The mobilization of hematopoietic stem cells (HSCs) from bone marrow (BM) to peri-
pheral blood (PB) and their subsequent collection are essential aspects of hematopoietic
stem cell transplantation (HSCT) programs (80, 81). Although peripheral blood stem
cells (PBSCs) are widely utilized, achieving a consensus on the optimal growth factor and
its dosage, the most effective chemotherapy type and dosage, methods for identifying pa-
tients with poor mobilization, and the best timing for initiating leukapheresis remain chal-
lenging (82). Currently, many transplantation centers have developed their own strategies
based on individual priorities and available resources, resulting in a lack of uniformity in
approaches among institutions.

Granulocyte-Colony Stimulating Factor (G-CSF)
Dosage Recommendation for Allogeneic HSCT in
Adults (83-88)

1. The recommended dose for sibling donors
o Split dose (5pg/kg twice daily) or 10 pg/kg (per day) as a single dose is advised.
e Aministering a higher split dose of 12 pg/kg twice daily leads to greater collection
yields and reduces the time required for collection.

2. The recommended dose for unrelated donors based on the National

Marrow Donor Program (NMDP) is as follows

e G-CSF should be given for 4 or 5 consecutive days at a daily dose of 10 pg/kg
daily.

e During the PBSCs collection, the total processed blood volume should not exceed
24 liters and should be collected during one or two consecutive days.
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Target Stem Cells Dose Collection for Allogeneic
HSCT in Adults (81, 88-95)

1. HSCT from sibling donors

e Minimum Cell Dose: The commonly accepted minimum dose of CD34+ cells for
sibling donor HSCT is 2 x 10° cells/kg.

o Engraftment Success: Successful engraftment has been reported with doses as low
as 0.75 x 10° CD34+ cells/kg; however, this often results in delayed neutrophil and
platelet engraftment, necessitating additional transfusions of blood components.

e Optimal CD34+ Cell Dose: Based on available data, a CD34+ cell dose between 4
and 5 x 10°cells/kg appears to be the most reasonable target for allogeneic trans-
plantation in adults.

o Impact of Higher Doses: Several studies indicate that higher doses of CD34+ cell
infusion are associated with more rapid engraftment.

e Risks of Excessive Dosing: Doses exceeding 8 x 10° cells/kg may increase the risk
of severe chronic graft-versus-host disease (GVHD) without improving patient
survival.

2. Transplantation from match unrelated donors
e Doses of CD34+ cells greater than 9 x 10° cells/kg do not provide any additional
survival benefits.
o Higher cell doses have not been linked to an increased severity of GVHD.

3. Transplantation from haploidentical donors
e Administering mega doses of CD34+ cells, specifically between 8 and 12 x 10°
cells/kg, has been associated with improved survival outcomes in haploidentical
transplantation.

G-CSF Dosage Recommendation for Allogeneic
HSCT in Pediatrics (96-98)

e The most common approach for administering G-CSF is 10 pg/kg, given either as
a single dose or divided into two semi-doses daily.

Target Stem Cells Dose Collection for Allogeneic
HSCT in Pediatrics (99-101)

e The Minimum amount of collected CD34+ cells are 2.4 x 10° CD34+ cells/kg.

e Higher doses of CD34+ cell (greater than 4-5 x 10° cells/kg) have been associated
with faster engraftment; however, these higher doses do not significantly affect
overall survival (OS) or the risk of developing GVHD.
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Strategies of Autologous Stem Cell Mobilization

Mobilization without chemotherapy (“Steady State”)

With this approach, HSCs are mobilized using cytokines exclusively. The only approved
cytokine for this purpose is G-CSF. Administering G-CSF at a dosage of 10 pg/kg/day or
12 pg/kg given twice daily, with leukapheresis starting on the fifth day of G-CSF treat-
ment, can lead to successful mobilization within a single day (102, 103).

Target Stem Cells Dose Collection for Autologous
HSCT (104-108)

e A minimum dose of 2 x 10° CD34+ cells/kg is generally accepted as a safe thres-
hold for a single transplant. Lower doses may increase the risk of delayed neutro-
phil and platelet engraftment.

e The optimal number of collected cells is often considered to be greater than 5 x
10° CD34+ cells/kg.

e Higher cell counts from individuals identified as “super-mobilizers” have been
linked to faster hematopoietic recovery, enhanced long-term platelet recovery, and
improved OS.

o CD34+ cell doses exceeding 6 x 10° cells’kg have been associated with better
long-term platelet recovery and a reduced need for blood transfusions; however,
there was no significant difference observed in the time required to reach a platelet
count of 20 x 10%/L.

Special Considerations for Obese Patients (109,
110)

A single daily dose of 14 pg/kg/day or a split dose of 2 x 7 pg/kg/day is recommended.
When patients were categorized based on body mass index (BMI; <25 or >25 kg/m?),
in patients with a BMI greater than 25 kg/m?, once-daily dosing led to a higher yield of
CD34+ cells.

Apheresis Procedure in Pediatric Patients with Low
Weight (96, 111)

Pediatric patients with low weight should have a hemoglobin (Hb) level of at least 12 g/
dL. Ifthis level is not met, it should be achieved through red blood cell (RBC) transfusion.
In cases of severe thrombocytopenia, platelet transfusions should be administered to
raise the platelet count above 40 x 10°/L to prevent bleeding complications.
For children weighing less than 20 kg, the apheresis machine should be primed with
RBCs and/or human albumin to minimize the extracorporeal volume.
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A summary of stem cell mobilization and apheresis strategies, along with target cell
doses for autologous stem cell transplantation in pediatric patients, is presented in Figure
1(112).

Figure 1. Stem Cell Mobilization and Apheresis for Autologous Stem Cell Transplantation
in Pediatric Patients

Mobilization for Pediatric Autologous HSCT
( Target goal: >2x1046 CD34)

Apheresis Strategy for Low weight Patients

Hemoglobin should be at least 12 g/dL, G-CSF (10 pg/kg/day or 12 pg/kg given
or RBCs should be transfused to achieve twice daily)
this level
Leukapheresis beginning on the 5th day
Platelet transfusion is recommended to raise the of G-CSF
count above 40 x 10"9/L in order to prevent
bleeding

In children weighing less than 20 kg, the
apheresis machine should be primed with RBCs
and/or human albumin to reduce the
extracorporeal volume

Monitoring of Peripheral Blood CD34+ Cell Counts
in Autologous HSCT (113-122)

1. Reasons for selecting G-CSF alone strategy
o CD34+ cell counts typically peak in the blood between the fourth and sixth days
of therapy.
e Monitoring of CD34+ cells should commence on either day 4 or day 5.
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2. Plerixafor plus G-CSF mobilization strategy
o CD34+ cell counts should be assessed on days 4 and 5 of G-CSF administration.

3. Mobilization with chemotherapy
e CD34+ cell counts generally begin to be monitored 8 to 10 days after chemother-
apy administration.

Best Time to Initiate Leukapheresis (114, 115, 123)

e In regimens involving G-CSF alone or G-CSF combined with plerixafor, leuk-
apheresis is most commonly initiated on day 5.

e In chemotherapy mobilization strategies, the timing for starting leukapheresis is
typically based on a threshold of CD34+ cell counts. There is no consensus on the
optimal threshold; therefore, institutional practices and local guidelines may vary,
with minimal CD34+ counts ranging from 5 to 20 cells/uL.

Prediction of High-Risk Patients for Stem Cell Mo-
bilization Failure (2, 123-129)

Poor mobilizers are defined as patients who collect fewer than 2 x 10° CD34+ cells/kg
or those who mobilize less than 20 CD34+ cells/uL into the peripheral blood. Generally,
poor mobilizers can be categorized into two groups: predicted poor mobilizers and pro-
ven poor mobilizers (130).

Proven Poor Mobilizers

A “proven poor mobilizer” is defined as a patient who fails to achieve sufficient circula-
ting CD34+ cell counts after undergoing adequate mobilization efforts (such as G-CSF
administration). Specifically, this designation applies to patients who have received 10
pg/kg of G-CSF alone or at least 5 pg/kg after chemotherapy, yet their peak circulating
CD34+ cell count remains below 20/uL. Additionally, if these patients collect fewer than
2 x 10° CD34+ cells/kg during the first mobilization attempt, they are classified as proven
poor mobilizers (131).

Predicted Poor Mobilizers
Predicted poor mobilizers are patients identified as having a high risk of inadequate stem
cell mobilization based on patient or disease characteristics such as:

e Refractory or advanced stage of disease

e High number of prior treatment line (>2 lines of chemotherapy)

o Extensive BM involvement or cellularity <30% at the time of mobilization

o Age greater than 60 years

e Prior exposure to alkylating agents
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Prior radiation

Prior treatment with lenalidomide, fludarabine, daratumomab, and melphalan
Low CD34+ cell count before apheresis

Platelet count below 100 x 10° /L

Previous autologous HSCT

Low Hb level and white blood cell (WBC) count before mobilization

This definition aims to help clinicians identify patients who may benefit from early
intervention with alternative mobilization strategies.

Prediction of Mobilization Failure Based on CD34+
Cells Yield (114, 115, 132)

1. Prior to apheresis

Borderline poor mobilizers: Patients with 11-19 CD34+ cells/uL at maximum
stimulation in PB may yield approximately 1.5-2 x 10%kg CD34+ cells after
apheresis.

Relatively poor mobilizers: Patients with 6—10 CD34+cells/pL at maximum sti-
mulation in PB are likely to yield less than 1 x 10%/kg CD34+ cells after apheresis.
Absolute poor mobilizers: Patients with <5 CD34+ cells/uL at maximum stimu-
lation in PB may yield between 0.75 and 1.25 x 10%kg CD34+ cells after aphe-
resis.

2. After apheresis

Optimal collection: When pre-apheresis CD34+ cell counts exceed 20 cells/uL, a
yield of >5 x 10° CD34+ cells/kg may be achieved.

Low collection: A yield ranging from >2 to <5 x 10° CD34+ cells/kg is considered
low.

Poor collection: A yield of less than 2 x 10° CD34+ cells/kg is classified as poor.
Failed collection: Apheresis is deemed impossible due to insufficient peripheral
blood CD34+ cell counts.

Strategies for Management of Poor Mobilizes in
Autologous HSCT (133-139)

Borderline Poor Mobilizers

1. Large-volume leukapheresis
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o This strategy involves considering 4.0-5.3 times the patient’s total blood volume
as the target PB volume for leukapheresis.

e No significant difference in CD34+ cell viability was observed when compared
to normal-volume apheresis, which typically uses 2.7-3.5 times the patient’s total
blood volume.

o Large-volume leukapheresis is indicated for relatively poor mobilizers or patients
with a high individual CD34+ cell collection goal (>3 transplants).

2. Plerixafor addition
The addition of plerixafor to standard mobilization strategies should be considered for
patients who continue to mobilize poorly even with larger-volume approaches.

3. Rest period
A rest period of 2 to 4 weeks is recommended for patients who fail their initial mobiliza-
tion attempt.

4. Plerixafor plus G-CSF with or without chemotherapy
The addition of plerixafor to G-CSF alone or to G-CSF combined with chemotherapy
results in:
e Increased mobilization of CD34+ cells
e Increased proportion of more primitive HSC subsets
e A positive correlation between the number of reinfused natural killer (NK) cells
and early absolute lymphocyte recovery following autologous HSCT

5. Preemptive intervention
Preemptive intervention with plerixafor should be considered for at-risk patients.

Relatively poor and poor mobilizers
Preemptive use of plerixafor should be considered.

A summary of apheresis and mobilization strategies based on CD34+ cell counts prior
to apheresis for poor mobilizers in autologous HSCT is displayed in Figure 2.
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Figure 2. Apheresis and Mobilization Strategies Based on CD34+ Cell Counts Prior to
Apheresis

CD34+ Cell Count Prior to
Apheresis

Large-volume Pre-emptive use of

No intervention required ) .
q leukapheresis Plerixafor®

Plerixafor addition to
standard mobilization

A rest period of
2 to 4 weeks

*Plerixafor: 240 pg/kg/ 8-12 h before apheresis by subcutaneous injection

Threshold of Leukocytosis for Holding Growth Fac-
tor (140-142)

o In one-third of patients, WBC counts exceeded 50 x 10°/L, while less than 1% had
WBC counts greater than 75 x 10%/L.

e During G-CSF mobilization, a significant increase in spleen size was observed.
The median spleen volume increased by 1.47-fold on the first day of leukapheresis
but returned to near pretreatment size after 7 days of leukapheresis.

No cases of splenic rupture or thrombosis were reported.

Only 9% of patients experienced an increase in splenic volume of more than two-

fold.

There was no correlation found between changes in spleen volume, G-CSF do-

sage, peak absolute neutrophil count (ANC), CD34+ cell yield, or donor weight.

Although there is no documented evidence linking hematological parameters to sple-

nic enlargement or the risk of splenic rupture, current data suggest that G-CSF adminis-
tration should be withheld when WBC counts exceed 100 x 10°/L, and plerixafor should
be withheld when WBC counts exceed 75 x 10%/L.
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Mobilization Failure in Allogeneic HSC Donors

In healthy donors, the failure to mobilize stem cells using G-CSF is relatively rare, with
an estimated incidence rate of 5% to 10%. While plerixafor is not currently approved for
use in allogeneic HSCT, two case series have demonstrated the feasibility and safety of
combining plerixafor with G-CSF. This combination has been shown to successfully mo-
bilize a sufficient number of HSCs in healthy pediatric haploidentical and genoidentical
donors who did not respond adequately to G-CSF alone (143, 144).
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BLOOD PRODUCTS 5
TRANSFUSION

Blood products transfusion support is a crucial aspect of care for patients undergoing
stem cell transplantation. Ensuring the availability of safe and effective blood products
during the pre-, peri-, and post-transplantation phases is vital for optimizing overall sur-
vival and improving outcomes in this patient population. Effective transfusion support
helps manage complications such as anemia, thrombocytopenia, and coagulopathy, ulti-
mately contributing to better recovery and quality of life for these individuals (145).

Hematopoietic stem cell transplantation (HSCT) recipients are at risk of transfusion-
associated graft-versus-host disease (GVHD) and should receive irradiated cellular blood
products (146). According to the European Committee on Blood Transfusion, it is recom-
mended that no part of the blood component receive a dose less than 25 Gy and greater
than 50 Gy during irradiation (147).

There is no universal consensus on the duration of using irradiated blood products in
HSCT recipients. However, standard practice is:

o For autologous HSCT, irradiated blood products should be given starting at least
2 weeks prior to stem cell collection until at least 3 months after HSCT (6 months
if total body irradiation (TBI) has been used in conditioning). Patients diagno-
sed with Hodgkin lymphoma or those who have received purine analog treatment
should receive irradiated blood products indefinitely.

o For allogeneic HSCT, irradiated blood products should be given starting at the la-
test with the conditioning regimen. The recommended duration of irradiated blood
product use is based on the recovery of the recipient’s immune system, as indica-
ted by a lymphocyte count above 1 x 10°/L, absence of active chronic GVHD, and
discontinuation of all immunosuppressive medications.

Additionally, allogeneic cellular blood components transfused to hematopoietic stem
cell (HSC) donors within 7 days before or during the harvest should also be irradiated to
prevent transfusion-associated GVHD in the transplant recipient (148, 149).

Additionally, recipients of HSCT should receive leukocyte-reduced red blood cells
(RBCs), platelet concentrates (PCs), and fresh frozen plasma (FFP) to minimize the risk
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of febrile non-hemolytic transfusion reactions, reduce the incidence of alloimmunization
to leukocyte antigens, and lower the risk of cytomegalovirus (CMV) transmission (2).

Red Blood Cell Concentrates

The Pediatric Critical Care Transfusion and Anemia Expertise Initiative (TAXI) recom-
mends a hemoglobin (Hb) concentration threshold of 7-8 g/dL for considering RBC trans-
fusion in children undergoing HSCT who are critically ill or at risk for critical illness, pro-
vided they are hemodynamically stable (150). The volume of RBC should be calculated
using the following formula:

Volume (mL RBC): Target Hb after transfusion (g/dL) — pretransfusion
Hb (g/dL) x 4 x weight (kg)

Platelet Concentrates (PCs)
In non-febrile patients without active bleeding, prophylactic platelet transfusions should
be considered to maintain a platelet count at or above 10 x 10%/L. For patients experien-
cing active bleeding, febrile conditions, or active infections, prophylactic PC transfusi-
ons should be administered at a threshold of 20 x 10%L. In circumstances such as acu-
te GVHD, mucositis, hemorrhagic cystitis, or diffuse alveolar hemorrhage, which may
elevate the risk of bleeding, the threshold should be raised to 20 x 10°/L or even higher.
depending on clinical judgment (151).

Current recommendations for platelet transfusion volume are 10 to 20 mL/kg of body
weight for children <15 kg, or a single pack for children >15 kg, with a maximum volume
of one pack (152).

Transfusion in ABO- or RhD-Incompatible HSCT

Approximately 50% of transplants are ABO incompatible; however, this is not a barrier
to HSCT. Nonetheless, immunohematological issues may arise, and specific precautions
must be implemented to ensure a safe HSCT procedure. There are three types of ABO
incompatibility:

e Major Incompatibility (20-25% of HSCTs): In cases of major incompatibility, the
recipient’s plasma contains isohemagglutinins. To manage the potential risk of
hemolysis, the erythrocyte content of the peripheral blood stem cells collected via
apheresis should be less than 20 mL (or hematocrit <2%).

e Minor Incompatibility (20-25% of HSCTs): In cases of minor incompatibility, the
donor’s plasma contains isohemagglutinins (>1/256) and immune cells. To pre-
vent severe hemolysis during transplantation, plasma reduction in the stem cell
product is recommended. It is important to note that plasma reduction does not
decrease the content of B lymphocytes; therefore, it does not affect the occurrence
of passenger lymphocyte syndrome or delayed hemolysis.
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o Bidirectional Incompatibility (up to 5% of HSCTs): In cases of bidirectional in-
compatibility, both the donor and recipient have plasma containing isohemaggluti-
nins and immune cells. In such situations, both RBC and plasma depletion should
be considered if isohemagglutinins are greater than 1/128 and hematocrit exceeds
2% (153, 154).

During the HSCT process, it is essential to consider the blood types and immune sys-
tems of both the donor and recipient, with a preference for using products that are com-
patible with both parties (Table 6) (145).

Table 6. RBC, Platelet, and Plasma Transfusion Support for Patients Undergoing ABO-In-
compatible HSCT

Phase II and Phase IIT**

RBC Platelets Plasma
ABO All

I"Cl‘:;:;gf‘ti' LTI Products First Second First Second
- choice choice choice choice
(6] A Recipient (6] A AB, B, O A AB
(6] B Recipient (0] B AB, A, O B AB
Major (6] AB Recipient (6] AB A,B,O0 AB -
A AB Recipient A, O AB A,B,0O AB -
B AB Recipient B,0O AB B,A, O AB -
A (6] Recipient (6] A AB, B, O A AB
B (6] Recipient (6] B AB, A, O B AB
Minor AB (0] Recipient (6] AB A,B,0 AB -
AB A Recipient | A, O AB A,B, 0 AB -
AB B Recipient | B, O AB B,A,O AB -
A B Recipient (0] AB B,A, O AB -
Bidirectional
B A Recipient (0] AB A,B,0 AB -

RBC: red blood cell
"Phase I until preparative regimen **Phase Il until complete engraftment, Phase III after complete
engrafiment
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RhD incompatibility is an important consideration in HSCT for both genders. This
issue is particularly relevant for RhD-negative female recipients receiving transplants
from RhD-positive donors. RhD-negative female recipients should receive RhD-negative
RBCs, while the use of RhD-negative platelet units is less critical. Due to the intense
immunosuppression resulting from the conditioning regimen and the minimal amount of
RBCs in single and random donor platelet units, anti-D antibodies are unlikely to deve-
lop, making RhD-incompatible platelet products generally safe. Given the minimal risk
of D alloimmunization from red cells present in RhD-positive platelet units, selecting
RhD-negative platelets is not mandatory (155, 156). Currently, there are no consensus
recommendations regarding RhD immunoglobulin prophylaxis for HSCT in these pa-
tients (157). After erythroid engraftment—indicated by the appearance of RhD-positive
RBCs—transfusions of RBCs and platelet components can be switched to RhD-positive
products for RhD-negative recipients (158).
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PHARMACEUTICAL 6
MICROBIAL
PROPHYLAXIS

Antimicrobial prophylaxis is an essential component of care during and after hematopoie-
tic stem cell transplantation (HSCT), as exposure to infectious pathogens is unavoidable
in this patient population. It is crucial to tailor antimicrobial prophylaxis based on local
epidemiology, resistance patterns, and individual patient factors to optimize the preven-
tion of infections and minimize the development of antimicrobial resistance in HSCT
recipients.

Antibacterial Prophylaxis

Systemic antibacterial prophylaxis is not recommended during the neutropenic period
following the conditioning regimen, nor during the pre-engraftment or post-engraftment
periods for patients without acute or chronic graft-versus-host disease (GVHD) (159-
162). However, late infection prevention (beyond 100 days post-transplant) targeting
mainly encapsulated bacteria (Streptococcus pneumoniae and Haemophilus influenzae),
is advised for patients who are undergoing immunosuppressive (IS) therapy for GVHD
and for those with severe hypogammaglobulinemia (serum IgG levels <400 mg/dL) who
are receiving immunoglobulin replacement therapy (163-165).

Antiviral Prophylaxis

Antiviral prophylaxis is an essential component of care for patients undergoing HSCT to
prevent viral infections, particularly those caused by herpesviruses such as herpes zoster
(HZ), cytomegalovirus (CMV), and varicella-zoster virus (VZV).

The choice of antiviral agent, duration of prophylaxis, and dosing regimens should be
tailored to individual patient risk factors and local practices to optimize outcomes and
prevent viral infections in HSCT recipients. Our recommendation for antiviral prophla-
xis, are summarized in Table 7 (10, 166-169).
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Table 7. Antiviral Prophylaxis for HSCT in Pediatrics

Virus ‘ Serostatus Prophylaxis Recommendation
Acyclovir: 250 mg/m?or 5 mg/kg q12h; start
Seropositive from day +1 until neutrophil engraftment
recipients or mucosal recovery (at least 4 weeks after

Herpes Simplex

Virus (HSV) HSCT in VZV-seronegative recipients)

Seronegative

. Not recommended
recipients

Seropositive Acyclovir: 20 mg/kg q12h; for at least 12
recipients months or up to the end of IS therapy

Post-exposure prophylaxis with anti-VZV-

Varicella-Zoster immunoglobulins (within 96 hours) and

Virus (VZV) Seronegative acyclovir/valaciclovir is recommended for
recipients seronegative patients exposed to VZV. Pro-

phylaxis should begin as soon as possible

and continued until 21 days after exposure.

Letermovir may be an option for seropositive
Seropositive children in an off-label setting; given for 3
Comemlsyis recipients months after HSCT
(CMV)
Seronegative

. Has not been adequately studied after HSCT.
recipients & se-

ropositive donors

HSCT: hematopoietic stem cell transplantation, IS: immunosuppressive

*k CMV is a latent virus belonging to the herpesvirus family. It is one of the most common
viral pathogens that can reactivate after HSCT during T-cell deficiency or dysfunction
periods. It remains a significant and potentially life-threatening infectious compli-
cation following allogeneic HSCT (170-174). In addition to prophylactic strategies,
preemptive antiviral treatment guided by surveillance through quantitative polymera-
se chain reaction (PCR) assays is crucial for the early detection of CMV reactivation,
ideally before any clinical symptoms arise (175, 176). Figure 3 presents the threshold
of CMV viral load for initiating preemptive therapy (177), which is further detailed in
the preemptive treatment regimen outlined in Table 8 (178, 179).
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Figure 3. Threshold of CMV Viral Load for Preemptive Therapy
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Duration of Induction:

» For Non-Cord blood (CB) transplant, a switch to maintenance dosing
may be made if CMV DNA levels are declining (at least 1-log reduction)
after 7 days; if not declining at day 7 of treatment, continue twice daily
induction dosing until CMV DNA levels have decreased over the course
of 1 week; at which point transition to maintenance dosing can occur.

» For CB transplant, CMV DNA levels must be negative at one week in
order to transition to maintenance dosing. Otherwise, continue induction
dosing until CMV DNA levels are negative at which point a transition to
maintenance is appropriate.

» All patients failing induction should be considered to switch therapy
and do UL97/UL54 resistance testing.

Duration of Maintenance Therapy:
» Maintenance therapy should be given for at least 2 weeks after induction
therapy has been completed.

* Preemptive therapy may be discontinued when the surveillance test is
negative after a minimum of 3 weeks of therapy (at least 1 week induc-
tion). Shorter courses may be appropriate for subsequent episodes of
CMV reactivation.

Primary antifungal chemoprophylaxis: Despite advances in the treatment of invasive
fungal infections (IFIs) due to the availability of new antifungal drugs, IFIs continue to
be a significant cause of morbidity and mortality following HSCT (165). According to
the guidelines from the 8th European Conference on Infections in Leukemia (ECIL-8),
primary antifungal chemoprophylaxis is strongly recommended for patients undergoing
allogeneic HSCT during both the pre-engraftment and post-engraftment phases until im-
mune reconstitution occurs. This recommendation also applies to patients receiving im-
munosuppressive treatment for GVHD (162). Our recommendations, based on the ECIL-
8 guidelines, are summarized in Table 9.
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Table 9. Antifungal Prophylaxis for HSCT in Pediatrics

Antifungal Drug ‘ Dose and Administration Route

Single dose of 8—12 mg/kg (max 400 mg)/day IV or PO (in the

LT pre-engraftment phase)
ltraconazole Patients aged 2 years or older: 5 mg/kg/day PO in two divided
doses
Caspofungin 50 mg/m*day (70 mg/m? on day 1) IV in a single dose
Liposomal Ampho- 1 mg/kg every other day [V OR
tericin B 2.5 mg/kg twice per week IV

Patients aged 13 years or older: Delayed-release tablets, 300

Posaconazole mg in a single daily dose (2 x 300 mg on day 1)

Patients aged 1 month to 12 years: Oral suspension, starting
dose 6 mg/kg three times daily

Patients aged 2—12 years, or aged 12—14 years weighing <50
kg: 8 mg/kg (9 mg/kg on day 1) twice a day IV or 9 mg/kg
Voriconazole twice a day PO
Patients aged 12—14 years weighing >50 kg, or patients aged
15 years and older: 4 mg/kg (6 mg/kg on day 1) twice a day IV
or 200 mg twice a day PO

1V: intravenously, PO: per os

Secondary antifungal chemoprophylaxis: Secondary antifungal prophylaxis is strongly
recommended for patients with a history of IFI prior to undergoing allogeneic HSCT.
This approach is a critical strategy to mitigate the risk of post-transplant IFI recurrence.

High-risk patients for invasive fungal infection (IFI)
recurrence after HSCT

¢ Hematologic malignancy not in complete remission (CR)
¢ High-risk allogeneic HSCT

© Matched unrelated donor (MUD)

o CB transplant

o T-cell depleted
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o Haploidentical transplant

o Chronic lymphocytic leukemia (CLL)

o Mismatched transplant

Multi-drug resistant (MDR) fungus

Disseminated or multifocal lung IFI (especially mold disease)
Severe comorbidities (e.g., liver/kidney impairment)

<4 weeks of antifungal treatment

Recommendations for peritransplantation manage-
ment of high-risk patients for invasive fungal infec-
tion (IFI) Recurrence

Continue antifungal treatment pre-HSCT at least 4 weeks and until polymorpho-

nuclear (PMN) leukocyte recovery and objective signs of response by symptoms

and follow-up computed tomography (CT) scan, then switch to secondary antifun-

gal prophylaxis.

Consider reduced-intensity conditioning (RIC) regimen.

Secondary prophylaxis with mold-active triazole

o The duration of secondary antifungal prophylaxis is individualized; consider
stopping after up to 1-year post-HSCT (carefully evaluating for acute and chro-
nic toxicities from antifungals) if the patient is in CR, has PMN leukocyte count
>1000 cells/mm?, and no signs or symptoms of active IFL.

o Resume mold-active prophylaxis if GVHD develops—whether acute or chro-
nic—and requires systemic IS therapy.

Consider therapeutic drug monitoring (TDM) and close coordination with the

HSCT clinical pharmacist for managing drug interactions.

Triazole antifungal should be administered with a conditioning regimen (eg, bus-

ulfan, cyclophosphamide) or calcineurin inhibitors (CNIs) and sirolimus.

Consider infectious diseases consult, fungal biomarkers testing, CT imaging, and

prompt bronchoscopy, with any signs or symptoms consistent with IFI relapse.

o The role of surveillance with fungal biomarkers in asymptomatic patients recei-
ving mold-active prophylaxis is unproven.

Low-risk patients for invasive fungal infection (IFI)
recurrence after HSCT

Hematologic malignancy in remission

Standard-risk allogeneic HSCT

o Low-risk MUD

© Chronic myelogenous leukemia (CML), multiple myeloma, aplastic anemia
Prior candidemia but not disseminated candidiasis
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o Appropriate antifungal treatment >4 weeks

o Objective response >70% by CT for invasive mold disease

o Low risk according to hematopoietic cell transplantation comorbidity index (HCT-
Ch

Recommendations for peritransplantation manage-
ment of low-risk patients for IFl recurrence

o Consider a full-intensity conditioning regimen if indicated.
¢ Secondary prophylaxis with mold-active triazoles with TDM or echinocandin
o The duration of secondary antifungal prophylaxis is individualized; consider
stopping after up to 6 months post-HSCT (carefully evaluating for acute and
chronic toxicities from antifungals) if the patient is in CR, has PMN leukocyte
count >1000 cells/mm3, and no signs or symptoms of active IFI.

© Resume mold-active prophylaxis if GVHD develops—whether acute or chro-
nic—and requires systemic IS therapy.

o Consider bridging with intravenous (IV) echinocandin (history of prior Candida
spp.) or liposomal amphotericin B (invasive mold disease or endemic fungus) un-
til PMN leukocyte recovery if severe mucositis is expected and IV triazole cannot
be administered due to conditioning regimen.

o Triazole antifungal should be administered with a conditioning regimen (eg,
busulfan, cyclophosphamide) or CNIs and sirolimus.

o Consider infectious diseases consult and repeat fungal biomarkers with CT ima-
ging for any signs or symptoms of relapse.

o The role of surveillance with fungal biomarkers in asymptomatic patients recei-
ving mold-active prophylaxis is unproven.

Prophylaxis Against Pneumocystis Jirovecii Pneumonia
Pneumocystis jirovecii pneumonia (PJP) is a serious infectious complication of HSCT
with a high early mortality rate. Several risk factors have been identified for the develop-
ment of PJP after transplantation, including GVHD and/or its treatment with IS therapy,
lymphopenia, GVHD prophylaxis containing alemtuzumab or rabbit anti-thymocyte glo-
bulin (ATG), and peripheral blood stem cell source (180).

Prophylaxis is recommended from the time of engraftment until at least 6 months
post-transplant, or longer for patients who continue to receive immunosuppressive drugs
and/or have chronic GVHD. Trimethoprim/sulfamethoxazole is the drug of choice for
primary prophylaxis against PJP, with a recommended dose of 150 mg/m? per day of the
trimethoprim component, administered either in 1 or 2 doses per day or the same dose
given 2 to 3 times per week (181).
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Nutritional Support

Enteral nutrition (EN) is preferred over total parenteral nutrition (TPN) for all patients
due to its beneficial effects on gastrointestinal (GI) integrity and the microbiome.

Total Parenteral Nutrition

Indications for the use of TPN during hematopoietic stem cell transplantation (HSCT):

o Contraindications for EN

e Severe malnutrition at admission (serum albumin <3 g/dL or body mass index
(BMI) <18.5 kg/m?).

e A prolonged period (1-3 days in infants and 4-5 days in children and adolescents)
of minimal oral intake (failure to meet 60—70% of requirements with EN)

o Clinical weight loss of >10% during treatment

e Oral feeding impractical; severe mucositis (grade 4)

TPN should be reduced promptly, and it should be completely discontinued as soon
as the patient is able to meet at least 50% of their daily energy requirements through oral
intake (79, 182).

Recommended daily parenteral nutrient requirements for children, based on the Ame-
rican Academy of Pediatrics (AAP) nutrition guidelines, are outlined in Table 10. These
dosages are designed for patients with normal fluid losses and without any organ failure.
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Table 10. Daily Parenteral Nutrient Requirements

Nutrient ‘ Weight/Age Requirement
>1.5kg 150 mL/kg
1.5-2.5 kg 120 mL/kg
Fluid 2.5-10 kg 100 mL/kg
10-20 ke 1000 mL + 50 mL/kg for each kg
>10 kg
1500 mL + 20 mL/kg for each kg
>20 kg 20 ke
Up to 10 kg 100 kcal/kg
+
Calories ~10-20 ke 1000 kcal + 50 kcal/kg for each kg
>10 kg
1500 keal + 20 kcal/kg for each kg
>20 kg 20 ke
Preterm infants (<1 year) 34 g/kg
Term infants (<1 year) 2.5-3 g/kg
Protein
Older children (1-10 years) 1.5-2.5 g/kg
Adolescents (>10 years) 0.8-2 g/kg
Initially 0.5-1 g/kg, advance by
Infants (<1 year) 0.5-1 g/kg to a goal of 3 g/kg
. Initially 1 g/kg, advance by 1 g/kg
Fat Children (1-10 years) to a goal of 1-2 g/ke
Initially 1 g/kg, advance by 1 g/kg
Adolescents (>10 years) t0 a goal of 1-2 g/ke
Initially 6-8 mg/kg/minute, advan-
ce by 1-2 mg/kg/minute to a goal of
Infants (<1 year) 10-14 mg/kg/minute (max 18 mg/
kg/minute)
Initially 3—6 mg/kg/minute, advan-
Dextrose . .
Children (1-10 years) ce by 1-2 mg/kg/minute to a goal of
8—10 mg/kg/minute
Initially 2.5-3 mg/kg/minute, ad-
Adolescents (>10 years) vance by 1-2 mg/kg/minute to a
goal of 5-6 mg/kg/minute
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Nutrient

Weight/Age

Requirement

Infants and children 2-5 mEq/kg
Sodium ;
Adolescents and children (>50 1-2 mEq/ke
kg)
Infants and children 24 mEq/kg
Potassium ;
Adolescents and children (>50 1-2 mEq/kg
kg)
Chloride and Infants and children As needed to maintain acid—base
acetate balance
Preterm neonates 2-4 mEq/kg
Calcium Infants and children 0.5-4 mEq/kg
Adolescents and children (>50 10-20 mEq
kg)
Preterm neonates 1-2 mmol/kg
heshens Infants and children 0.5-2 mmol/kg
Adolescents and children (>50 10-40 mmol
kg)
Infants and children 0.3-0.5 mEq/kg
Magnesium ;
Adolescents and children (>50 10-30 mEq
kg)
Preterm neonates 400 ng/kg
Term neonates (3—10 kg) 250 ng/kg
Zinc
Children (1040 kg) 50 pg/kg (up to 5 mg)
Adolescents (>40 kg) 2-5mg
Infants and children (<40 kg) 20 pg/kg (up to 500 pg)
Copper
Adolescents (>40 kg) 200-500 pg
Infants and children (<40 kg) 1 pg/kg (up to 55 pg)
Manganese

Adolescents (>40 kg)

40-100 pg
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Nutrient ‘ Weight/Age ‘ Requirement
Preterm neonates 0.05-0.3 pg/kg
. Term neonates and children
Chromium (<40 ke) 0.2 pg/kg (up to 5 pg)
Adolescents (>40 kg) 5-15pug
Infants and children (<40 kg) 2 pg/kg (up to 100 pg)
Selenium
Adolescents (>40 kg) 40-60 pg

Nutritional assessments for patients receiving EN or TPN during stem cell transplan-
tation are summarized in Table 11.

Table 11. Monitoring of Nutritional Parameters

Parameter Monitoring Frequency

Weight Daily
Serum Albumin Weekly
Sodium, Potassium, Creatinine Daily

Calcium, Magnesium, Phosphate, Liver

Function Tests Twice weekly

INR, quick Twice weekly
3—-6x daily if TPN or preexisting diabetes
Glucose mellitus; otherwise, twice weekly
Triglycerides Twice weekly (if TPN)
Vitamin D, Vitamin B12 At admission

INR: international normalized ratio, TPN: total parenteral nutrition

Vitamins supplementation

Vitamin K supplementation

1-3 years old: 30 pg/day | 9-13 years old: 60 pg/day

Once or twice weekly
4-8 years old: 55 pg/day | 14-18 years old: 75 pg/day
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Bone Health: Calcium/Vitamin D3
Consider calcium and vitamin D supplementation according to serum vitamin D3 level
and also for patients on steroids.
e Serum 25-OH-vitamin D3 levels: <30 ng/mL: 50,000 units weekly for 8 weeks,
followed by 1000-2000 units/day.
e Serum 25-OH-vitamin D3 levels: <10 ng/mL: 50,000 units weekly for 12 weeks,
followed by 1000-2000 units/day.
e Extra calcium during corticosteroid therapy: 1500 mg/day for older children,
1000-1200 mg/day for younger children (calcium carbonate or citrate).

Water-soluble vitamins (values per day) (183)

Vitamin B12 ‘ Vitamin B6 ‘ Vitamin B9 ‘ Vitamin C

0-6 months 0.4 g 0.1 mg 65 ng 40 mg

7 months 0.5 ng 0.3 mg 80 ng 50 mg

1-3 years 0.9 ug 0.5 mg 150 pg 15 mg

4-8 years 1.2 pug 0.6 mg 200 pg 25 mg

9-13 years 1.8 ng 1.0 mg 300 ug 45 mg

14-18 years 2.4 ug 1.2 mg 400 pg 75 mg
Mouthcare

The oral cavity should be evaluated before initiating the conditioning regimen and moni-
tored daily, as oral mucositis (OM) is one of the most debilitating complications associa-
ted with HSCT (79). The World Health Organization (WHO) scale integrates subjective
and objective criteria to assess the severity of OM (184).

Grade 0 = No oral mucositis

Grade 1 = Erythema/soreness

Grade 2 = Erythema/soreness, ulcers, able to eat solids

Grade 3 = Erythema/soreness, ulcers, requires a liquid diet (due to mucositis)

Grade 4 = Erythema/soreness, ulcers, alimentation not possible (due to mucositis)

Several risk factors contribute to the development of OM, including specific chemother-
apy agents such as high-dose melphalan, etoposide, and low-dose methotrexate (185).
Additionally, certain underlying conditions like Fanconi anemia, dyskeratosis congenita,
and myelodysplastic syndrome (MDS) can increase susceptibility (79).

To effectively prevent OM, maintaining excellent oral hygiene is crucial. This includes
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brushing teeth two to three times a day with a soft nylon toothbrush and adhering to a
non-cariogenic diet that limits highly fermentable carbohydrates and sticky foods, such as
those high in sugar and starch. It is also advisable to rinse the mouth with non-medicated
oral rinses -0.9% saline- or medical agents like Nystatin every four hours (186, 187).

Nystatin (oral drop)
Infants: 200,000 units (2 mL) PO every 4 hours, Children: 400,000-600,000 (4-6 mL)
units; PO every 4 hours, should be swished and retained in the mouth for as long as pos-
sible before swallowing.

Oral cryotherapy, which involves applying ice chips to the buccal mucosa during che-
motherapy treatment, is also a practical and cost-effective approach to preventing OM in
patients undergoing HSCT (188).

Anaphylactic Reactions

Epinephrine

Intramuscular epinephrine (1 mg/mL preparation); Epinephrine 0.01 mg/kg should
be injected intramuscularly (IM) in the mid-outer thigh. For larger children (>50 kg),
the maximum is 0.5 mg per dose. If there is no response or the response is inadequate,
the injection may be repeated in 5 to 15 minutes (or more frequently). If epinephrine is
injected promptly IM, patients respond to 1, 2, or, at most, 3 injections. If signs of poor
perfusion are present or symptoms are not responding to epinephrine injections, prepare
intravenous (IV) epinephrine for infusion.

Epinephrine infusion; For patients with inadequate response to IM epinephrine and
IV saline, give epinephrine continuous infusion, beginning at 0.1 pg/kg/minute by in-
fusion pump.

Intravenous epinephrine; In an adult or adolescent, this is accomplished by adminis-
tration of a 50 to 100 pg (0.05 to 0.1 mg) IV bolus of epinephrine by slow push of 0.5 to
I mL of 0.1 mg/mL epinephrine solution over 1 to 10 minutes. In pediatric patients, 0.1
mL/kg IV; not to exceed 1 mg/dose; may repeat every 3-5 minutes.

H1 antihistamine
Consider giving diphenhydramine 1 mg/kg (max 50 mg IV, over 5 minutes).

H2 antihistamine
Consider giving famotidine 0.25 mg/kg (max 20 mg IV, over at least 2 minutes).

Glucocorticoid
Consider giving methylprednisolone 1 mg/kg (max 125 mg IV).
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Premedication of Stem Cells Infusion

Medication ‘ Dosage and Administration Route
Diphenhydramine | 0.5—1 mg/kg/dose/PO or IV/q6h PRN
Hydrochloride (max 50 mg/day)
Antihistamines
Promethazine (>2 0.25-1 mg/kg/dose/PO/q4-6h PRN
years) (max 25 mg)
Corticosteroids: Hydrocortisone 2 mg/kg (max 100 mg)
Antipyretics: Acetaminophen 10 mg/kg
Antiemetics: Granisetron 0.01 mg/kg (max 3 mg)
Calcium Gluconate 10% 5 mL to 10 mL, over 10—15 minutes

1V intravenously, PO: per os, PRN: pro re nata

Antiemetics during conditioning regimen (should be administered 30 min before chemother-
apy)

Medication Dosage and Administration Route

Granisetron 0.04 mg/kg IV

Ondansetron 0.15 mg/kg once daily IV on days of chemotherapy
Dexamethasone 10 mg/m? once daily IV on days of chemotherapy

For children >30 kg: 125 mg PO 1 hour before chemotherapy
on day -1, followed by 80 mg PO once daily on days 2 and 3
For children <30 kg: 3 mg/kg PO 1 hour before chemotherapy
on day -1, followed by 2 mg/kg PO once daily on days 2 and 3

Aprepitant

1V: intravenously, PO: per os

Cardiac monitoring

High-dose alkylating agents, such as cyclophosphamide (CY), can result in various car-
diovascular complications, including heart failure, atrial arrhythmias, pericardial effu-
sion, and myocarditis. The CY-induced cardiac toxicity is driven by several mechanisms,
including inflammation, oxidative stress, disturbances in calcium homeostasis, and the
activation of programmed cell death (189). Given the potential severity of these compli-
cations, early detection is essential (190).

Echocardiography is one of the most widely used noninvasive techniques for monito-
ring cardiac toxicity. Early damage from CY contributes to diastolic dysfunction, which
is characterized by alterations in the E/A [early (E) and late (A) filling velocity] ratio,
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increased thickness of the interventricular septum during diastole, enlargement of the
left ventricular diastolic and systolic diameters, and early functional mitral regurgitation
(191, 192). Furthermore, hemorrhagic myocarditis associated with CY use is characteri-
zed by hypertrophy, increased myocardial echogenicity, decrease in left ventricular ejec-
tion fraction, and normal chamber size as observed on echocardiography (193).

An early sign of CY-induced acute heart failure is a prolonged corrected QT interval
(QTc) and increased QTc dispersion, which indicates the difference between the maxi-
mum and minimum QTc intervals on a 12-lead electrocardiogram (ECG) (194-196).

In addition to echocardiography, circulating cardiac markers such as B-type natriuretic
peptide (BNP) and cardiac troponin T or I can be valuable in predicting early chemother-
apy-induced cardiac toxicity. BNP is particularly noteworthy in the context of high-dose
CY; it typically increases within the first 24 hours of treatment and may remain elevated
for up to a week following the clinical onset of acute heart failure (197-199). Troponin
levels are highly sensitive and generally peak between 8 and 15 days after high-dose CY
administration, indicating direct myocardial damage (192).

It is important to note that early elevations in troponin levels may occur even in the
absence of myocardial damage due to supply-demand mismatch ischemia or renal impair-
ment following CY administration (190).

Figure 4 illustrates the baseline and subsequent assessment strategies for patients re-
ceiving high-dose CY.
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Figure 4. Baseline and Subsequent Assessment of Patients Receiving High-Dose Cyclo-
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Donor Specific Anti-Human Leukocye Antigen
(HLA) Antibodies Desensitization

Donor-specific anti-HLA antibodies (DSAs) are associated with a high incidence of pri-
mary graft failure (GF) or delayed engraftment in haploidentical or mismatched HSCT,
regardless of the stem cell source, conditioning regimen intensity, or other patient and
donor characteristics (200, 201).

The strength of DSAs is determined by mean fluorescence intensity (MFI) values,
classified as follows: low (MFI between 1000 and 3000), moderate (MFI between 3000
and 5000), and strong (MFI over 5000). While GF is more common with MFI levels
exceeding 5000, rejection can occur at any MFI level. The European Society for Blood
and Marrow Transplantation (EBMT) has published consensus guidelines recommending
the detection and desensitization of patients with DSAs before HSCT if no other suitable
donor is available (202).

The choice of desensitization protocol may vary based on the center’s experience,
but it typically involves antibody removal through plasmapheresis or immunoabsorption,
inhibition of antibody production using monoclonal antibodies targeting CD20+ B lym-
phocytes (such as rituximab), antibody neutralization with intravenous immunoglobulin
(IVIG), and inhibition of the complement cascade (203).

In patients with an MFI greater than 5000, we do not recommend proceeding with
HSCT from the identified donor. Instead, we advise searching for a second-degree relati-
ve who can be a haploidentical donor or considering a mismatched donor.

For patients with an MFI between 1000 and 5000, and in the absence of a suitable do-
nor, our preferred DSA desensitization algorithm is outlined in Table 12. Desensitization
aims to reduce the DSA to an MFI of less than 1000 on phenotype panels and achieve a
negative flow cross-match.

Table 12. Donor-Specific Antibodies Desensitization Algorithm

Day ‘ Treatment

-21 * Rituximab 375 mg/kg

* Tacrolimus (1 mg, IV/PO per day)

* Mycophenolate mofetil (1 g, twice daily)

-14 * IVIG 100 mg/kg

* TPE: exchanging | plasma volume and replacing at 100% volume with
5% albumin

* IVIG 100 mg/kg
-12 * TPE: exchanging 1 plasma volume and replacing at 100% volume with
5% albumin

* IVIG 100 mg/kg
-10 * Therapeutic Plasma Exchange (TPE): exchanging 1 plasma volume and
replacing at 100% volume with 5% albumin




SUPPORTIVE CARE 73

Day | Treatment

-9 Check MFT; If MFI >3000, stop HSCT

-8 Start conditioning regimen
-1 Discontinue Tacrolimus & Mycophenolate mofetil
0 HSCT

Check MFI

If MFI >3000:

+1 & +2 |+ VIG 100 mg/kg
* TPE: exchanging 1 plasma volume and replacing at 100% volume with
5% albumin

HSCT: hematopoietic stem cell transplantation, IVIG: intravenous immunoglobulin, MFI: mean
fluorescence intensity, TPE:therapeutic plasma exchange
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ALLOGENEIC 8
HEMATOPOIETIC STEM

CELL

TRANSPLANTATION

Acute Leukemia

Acute Lymphoblastic Leukemia
With current chemotherapy protocols, the majority of pediatric patients with acute lym-
phoblastic leukemia (ALL) achieve favorable outcomes. However, for those who expe-
rience relapse, the criteria for utilizing hematopoietic stem cell transplantation (HSCT)
can differ among various leukemia cooperative groups, such as the Italian Association
of Pediatric Hematology-Oncology (AIEOP) and the Berlin-Frankfurt-Munster (BFM)
group. The integration of measurable residual disease (MRD) assessment into the treat-
ment of ALL has enhanced risk stratification. Additionally, the emergence of immunot-
herapy agents like blinatumomab, inotuzumab, and tisagenlecleucel in the upfront treat-
ment of ALL has shifted the indications for HSCT over time. Currently, MRD is regarded
as the most significant prognostic factor in childhood ALL, serving as a surrogate marker
for leukemia sensitivity to chemotherapy. Several cooperative groups have accepted this
to identify candidates for HSCT (204-207).

Tables 13 & 14, along with Figure 5, summarize the current indications for HSCT in
pediatric ALL based on the AIEOP-BFM ALL 2017, ALLTogetherl, and IntReALL 2010
protocols.
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Table 13. Indications for HSCT in Pediatric Patients with B-Cell ALL in First Complete Re-
mission (CR1)

Indication ‘ Criteria

» Age <6 months and initial WBC >300,000/uL
» Age <6 months and prednisone poor-response
*No CR at day 33

*MRD at EOC >5 x 107

Infants (<1 year) with
KMT2A-rearrangements and
one of the following:

UCIEEH s10E3 UL ) * HSCT indicated irrespective of MRD results

(922;p13)
* EOC MRD >5 x 107* (high positive)
* EOC MRD <5 x 10 (low positive) and still positi-
+ -
Ph-ALL a}gjvg?é ofthe fol ve at any level at the end of HR block 3
& * Uncertain risk factors for Ph+ ALL such as IKZF
mutations
e MRD >5 x 10 at EOC
Positive MRD * MRD >5% at EOI and >5 x 107 at mid-consolida-

tion (day 50)

* MRD >5% at EOI regardless of subsequent MRD
Patients >16 years levels
* NCI high-risk patients with MRD >1 x 10™*at EOC

Extramedullary disease * Indicated for HSCT if not in CR1 at EOC

* Induction Failure (IF)

* hypodiploidy (<44 chromosomes or DNA index
<0.8)

* KMT2A-AFF1 (previously MLL-AF4)

* [IKZF 1P

High-risk features with posi-
tive MRD at EOC

ALL: acute lymphoblastic leukemia, CR: complete remission, CR1: first complete remission, EOC:
end of consolidation, EOI: end of induction, HR: high-risk, MRD: measurable residual disease,
NCI: National Cancer Institute, Ph+: Philadelphia-positive, WBC: white blood cell
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Table 14. Indications for HSCT in Pediatric Patients with B-Cell ALL in Second Complete
Remission (CR2)

Indication ‘ Criteria

* All very early relapses (<18 months from diagnosis),
irrespective of site

* Early B-ALL isolated BM relapses (18 months from
diagnosis but <6 months after end of treatment)

All High-Risk Relapses

* Early* and late I[EM relapse (18 months from dia-
gnosis)

* Late BM relapse (>6 months after end of treatment)

* Early/late combined BM and IEM relapse (>18
months from diagnosis)

Standard-Risk Relapses, if
Positive MRD at EOI

B-ALL: B-cell acute lymphoblastic leukemia, BM: bone marrow, EOI: end of induction, IEM: iso-
lated extramedullary, MRD: measurable residual disease
*Early isolated EM relapse if HLA-matched donor available

Figure 5. Indications for HSCT in Pediatric Patients with T-Cell ALL

( 3\

PPR or MRD-FCM Positive
MRD EOI
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Induction

T- Cell ALL ( Induction failure

MRD
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[ Relapse ] [Consohdatmn consolidation MRDJ

EOC MRD
> 0.05%
HSCT ]

[ EMD, not in CR

\ J

ALL: Acute Lymphoblastic Leukemia, EOC: End of Consolidation, EOI.: End of Induction, FCM: Multicolor flow cytometry,
HSCT: Hematopoietic Stem Cell Transpl ion, MRD: Me able Residual Disease, PRP: Poor Prednisolone Response
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% The conditioning regimen plays a vital role in determining the outcomes of HSCT for
patients with hematological malignancies. Total body irradiation (TBI)-based condi-
tioning before allogeneic HSCT is considered the gold standard for children aged 4
years and older with ALL. This method has been linked to improved overall survival
(OS) and event-free survival (EFS), as well as a reduced risk of relapse and treatment-
related mortality (TRM), compared to patients who undergo myeloablative chemother-
apy conditioning regimens. Despite its benefits, long-term sequelae following TBI can
include secondary malignancies, as well as neurocognitive, endocrine, and cardiome-
tabolic effects, which are significant drawbacks. Additionally, TBI requires specialized
facilities, including sedation or anesthesia for pediatric patients (208-210).

Acute Myeloid Leukemia

In contrast to adults, where allogeneic HSCT significantly improves relapse-free survival
(RFS) and OS in intermediate- and poor-risk acute myeloid leukemia (AML) during first
complete remission (CR1), the role of HSCT as a consolidation treatment for newly dia-
gnosed pediatric AML remains a topic of considerable debate. Currently, there is no con-
sensus on the use of allogeneic HSCT in CR1 for children with AML. Decisions regar-
ding the optimal indication for HSCT are made by carefully weighing the risk of relapse
against the risk of non-relapse mortality (NRM) and the potential late effects associated
with the procedure (211-214).

Table 15 presents the current indications for allogeneic HSCT in pediatric patients
with AML. These indications reflect the evolving understanding of risk stratification and
treatment response in pediatric AML, emphasizing the importance of genetic factors and
MRD assessment in determining eligibility for HSCT.
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Table 15. Indications for HSCT in Pediatric Patients with AML

Indication ‘ Criteria

» Abnormalities of 3q: inv(3)(q21.3q26.2)/t(3;3)
(921.3926.2)/RPN1-MECOM, t(3;21)(q26.2;q22)/
RUNX1-MECOM, (3;5)(q25;q34)/NPM1-MLF1

* 1(6;9)(p22.3;q34.1)/DEK-NUP214

*inv(16)(p13.3q24.3)/CBFA2T3-GLIS2

* 11p15 rearrangement/NUP98-any partner gene (eg, t(5;11)
(q35;p15.5)/NUP98-NSD1, NUP98-KDMS5A)

* 1(4;11)(q21;923.3)/KMT2A-AFF1 (MLL-MLLT2)

* 1(6;11)(q27;923.3)/KMT2A-AFDN (MLL-MLLT4)

*1(10;11)(p12.3;923.3)/KMT2A-MLLT10

*1(10;11)(p12.1;q23.3)/KMT2A-ABI1

* 1(11;19)(q23.3;p13.3)/KMT2A-MLLT1(MLL-ENL)

*t(11;12)(p15;p13)/NUP9S-KDMSA

*t(7;11)(p15.4;p15)/NUP98-HOXA9

* 1(5;11)(q35;p15)/NUP98-NSD1

* 1(16;21)(q24;922)/RUNX1-CBFA2T3

* 1(7;12)(q36;p13)/MNX1-ETV6

*1(16;21)(p11.2;q22.2)/FUS-ERG

» Abnormalities of 12p (ETV6): 12p13.2 rearrangement/
ETVe6-any partner gene, deletions of 12p.13.2/loss of
ETV6

* Monosomy5/del(5q) to include 5q31, loss of EGR1

* Monosomy 7

* High allelic ratio FLT3/ITD (allelic ratios cutoffs may
vary)

» Complex karyotype (=3 aberrations including at least one
structural aberration)

High-Risk Cytomolecu-
lar Abnormalities

* MRD >1% after the first induction course

* MRD >1 x 107 after the second induction course
Response Risk* * Primary induction failure [i.e. patients with >25% blasts
after the first induction course and >5% blasts after the
second induction course]

* Therapy-related AML

Secondary AML

* AML evolving from MDS
Second Complete Re-
mission (CR2) and |« All patients in CR2 and beyond
Beyond

CR2: second complete remission, MDS: myelodysplastic syndrome, MRD: measurable residual
disease

*For patients with favorable-risk AML (NPM1, CEBPA, (8;21), inv(16)/t(16,16)) who are
MRD-positive at first EOI, HSCT consolidation
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is not required based on this early time point.

For pediatric patients with AML, the optimal conditioning regimen has yet to be cle-
arly defined. Studies indicate that chemotherapy-based conditioning regimens result in
lower NRM and relapse rates than TBI-based regimens (215, 216). The most commonly
used chemotherapy regimens for children with AML include BuCy (Busulfan + Cyclo-
phosphamide), BuFlu (Busulfan + Fludarabine), and BuCyMel (Busulfan + Cyclophos-
phamide + Melphalan).

BuFlu represents a valid myeloablative regimen that can provide lower TRM and re-
duced rates of acute and chronic graft-versus-host disease (GVHD). This conditioning
regimen may serve as an alternative approach for patients at high risk of severe post-
transplant complications (217).

BuCyMel has been associated with a significant reduction in relapse incidence com-
pared to BuCy and may be considered a preparative regimen for AML patients at higher
risk of relapse, particularly those with high-risk cytogenetics (218).

At RIOHCT, we utilize T-cell-replete peripheral blood stem cells (PBSCs) and che-
motherapy-based conditioning regimens for patients with acute leukemia, including:

e BuCy (Busulfan + Cyclophosphamide) /Figure 6,7]

e BuFlu (Busulfan + Fludarabine) [Figure 8,9/

e BuCyMel (Busulfan + Cyclophosphamide + Melphalan) [Figure 10]
e BuFluCy (Busulfan + Fludarabine + Cyclophosphamide) /[Figure 11]
e TBF (Thiotepa + Busulfan + Fludarabine) [Figure 12-14]

The choice of conditioning regimen depends on several factors:

e Donor source: Matched related donor (MRD), matched unrelated donor (MUD),
mismatched related or unrelated donor, or haploidentical donor. Anti-thymocyte
globulin (ATG) may be incorporated into the conditioning regimen when using
alternative donors to prevent graft rejection and GVHD.

¢ Stem cell source: PBSCs, bone marrow (BM), or umbilical cord blood (UCB). The
stem cell source is particularly important in determining the composition of the
preparative regimen before HSCT.

These chemotherapy-based conditioning regimens aim to eradicate residual leukemia
cells while providing sufficient immunosuppression to allow engraftment of donor cells.
The intensity of the conditioning regimen is tailored to the patient’s disease status, co-
morbidities, and transplant-related factors to optimize outcomes and minimize toxicity.

Whenever possible, the interval between the end of the last chemotherapy and the start
of the conditioning regimen should be 3—6 weeks to reduce the risk of NRM (2).
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Figure 6. Myeloablative Conditioning (MAC): (BU-CY)
¢ Acute Leukemia (AL)
¢ Matched Related Donor (MRD)
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Figure 7. Myeloablative Conditioning (MAC): (BU-CY)
¢ Acute Leukemia (AL)
¢ Matched Unrelated Donor (MUD)
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Figure 8. Myeloablative Conditioning (MAC): (BU-FLU)

* Acute Myeloid Leukemia (AL)

* Matched Related Donor (MRD)
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Figure 9. Myeloablative Conditioning (MAC): (BU-FLU)
e Acute Myeloid Leukemia (AML)
¢ Matched Unrelated Donor (MUD)
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Figure 10. Myeloablative Conditioning (MAC): (BU-FLU-MEL)
* Acute Myeloid Leukemia (AML)
* Matched Related Donor (MRD)
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Figure 11. Myeloablative Conditioning (MAC): (BU-FLU-CY)
¢ Acute Leukemia (AL)
* Haploidentical Stem Cell Transplantation
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Figure 12. Myeloablative Conditioning (MAC): (TT-BU-FLU)
* Acute Lymphoblastic Leukemia (ALL)
¢ Matched Related Donor (MRD)
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Mixed-Phenotype Acute Leukemia

While HSCT has been associated with improved outcomes in adults with mixed pheno-
type acute leukemia (MPAL) and is recommended during CR1, several pediatric studies
suggest that HSCT may not provide significant benefit in CR1, especially for those with
favorable characteristics (219). In pediatric patients, HSCT in CR1 is generally conside-
red for those with positive MRD following consolidation, as outlined by the Children’s
Oncology Group (COG) and BFM-AIEOP protocols (220).

Acute promyelocytic leukemia

Acute promyelocytic leukemia (APL) represents 5% to 7% of all pediatric AMLs and has
shown an OS rate of 98.4% and an EFS rate of 8§9.4% in standard-risk patients, and 84.3%
and 74.2% in high-risk patients, respectively (P= 0.002 and P= 0.043). These outcomes
were achieved through the International Consortium for Childhood APL (ICC-APL-01)
trial, which aimed to reduce anthracycline exposure while increasing the use of all-trans
retinoic acid (ATRA) (221).

HSCT is no longer indicated for patients with APL in CR1, except for those who have
persistent PML-RARA transcripts at the end of consolidation (<1%). In such cases, sal-
vage therapy followed by allogeneic HSCT is recommended (2).

However, HSCT is crucial for patients who relapse and achieve a second CR (CR2)
following salvage chemotherapy. The decision between allogeneic HSCT and autologous
HSCT hinges on the understanding that graft-versus leukemia (GVL) effect in allogeneic
HSCT may be offset by a higher risk of TRM. Furthermore, patients who relapse after
autologous HSCT are more likely to attain a successful second remission through salvage
therapy compared to those who relapse following allogeneic HSCT (222-224).

Prognostic factors linked to transplant outcomes in APL during CR2 that negatively
affect patient outcomes include a relapse time of less than 18 months from diagnosis,
prior treatment with arsenic trioxide (ATO) which may be associated with delayed he-
matopoietic recovery after transplantation, and the inability to eliminate the PML-RARA
transcript (225-227). Based on these recommendations, for children who experience a
relapse within 18 months of the initial diagnosis and have either previously received ATO
or have not been exposed to it:

e Autologous HSCT is considered if a second complete molecular remission (CMR)
is achieved following the induction and consolidation strategy.

o If PML-RARA remains positive at the end of consolidation, allogeneic HSCT is
recommended after an additional cycle of intensive therapy.

For children who relapse 18 to 36 months after the initial diagnosis:

o If they have been previously treated with ATO and achieve CMR after four con-
solidation courses, they may be considered for autologous HSCT. For those who
remain positive for the PML-RARA transcript, allogeneic HSCT is planned follo-
wing additional intensive consolidation chemotherapy.

e In children who have not been previously exposed to ATO, reinduction with ATO-
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ATRA and gemtuzumab ozogamicin (GO) is recommended. If CMR is achieved,

maintenance therapy with ATO-ATRA is initiated, and if PML-RARA remains

persistently positive at the end of consolidation, allogeneic HSCT is considered.
In patients who experience a very late relapse, defined as hematological or molecular re-
lapse occurring more than 36 months after diagnosis, the benefits of consolidation HSCT
are uncertain. For these individuals, maintenance therapy with ATO-ATRA may be an
option.

Extramedullary Relapse
Extramedullary relapse in APL can occur in various locations, with the central nervous
system (CNS), skin, and external auditory canal being the most common (228, 229). CNS
relapse with a very low incidence in children (1.39%) (230) is mostly accompanied by
signs of molecular disease in the BM and is significantly associated with elevated white
blood cell (WBC) counts and/or intracranial hemorrhage at diagnosis (230, 231). For
CNS relapses, intrathecal chemotherapy, with or without ATO-ATRA, has been reported
as an effective treatment option (232). Since ATO accumulates in epidermal tissues and
can cross the blood-brain barrier, reaching cerebrospinal fluid (CSF) levels that may be
up to 50% of serum levels, a therapeutic response at these sites is anticipated (233).

The role of HSCT in isolated CNS relapse remains controversial, although it was re-
commended by the European Leukemia Network (ELN) in 2009 (234). For patients with
concurrent molecular disease in the BM, achieving a CMR is crucial for the successful
outcome of autologous HSCT. Some experts recommend allogeneic HSCT for patients
with an available human leukocyte antigen (HLA)-identical donor, while others prefer
autologous HSCT due to its lower risk of TRM (232).

In terms of the conditioning regimen, there is no universally established best chemot-
herapy protocol. However, myeloablative conditioning (MAC) regimens, commonly used
for AML, have been widely applied for both autologous and allogeneic HSCT (2, 232).

Hemoglobinopathies

Thalassemia

Despite progressive improvements in the management of hemoglobinopathies, allogeneic
HSCT remains the only potentially curative and widely available option for patients with
transfusion-dependent thalassemia (TDT) (235).

According to the 2021 Thalassaemia International Federation (TIF) guidelines, HSCT
should be offered to thalassemia patients at an early age, before the development of com-
plications related to iron overload (236).

To predict the outcomes of HSCT, the Pesaro group developed a prognostic score
for patients under 17 years of age, stratifying them into three risk groups based on fac-
tors such as the adequacy of iron chelation, hepatomegaly, and portal fibrosis (237-239).
Another critical factor influencing post-transplant outcomes is the preparatory regimen,
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which aims to eliminate the disordered marrow and create a supportive environment for
the transplanted marrow to survive and thrive (240). Transplant-related acute and long-
term complications primarily arise from the intensity of the conditioning regimen (241).

An optimized conditioning regimen is crucial to maximize outcomes for patients with
TDT undergoing HSCT. The conditioning regimens have evolved over time, with myelo-
ablative BuCy being the standard approach due to their effectiveness in heavily transfu-
sed patients. However, this regimen is associated with hepatic and cardiac toxicity due to
iron overload and the adverse effects of busulfan and cyclophosphamide (238).

One of the most prevalent toxicities associated with conditioning regimens is busul-
fan-induced veno-occlusive disease (VOD) or sinusoidal obstruction syndrome (SOS),
which is dose-dependent (242, 243). Treosulfan, a water-soluble bifunctional alkylating
agent with myeloablative and immunosuppressive properties, has demonstrated a redu-
ced risk of hepatic, pulmonary, and neurological toxicity compared to busulfan-based
regimens (244).

With the advent of reduced-toxicity, fludarabine-based MAC regimens (245, 246),
Treosulfan has emerged as a safe and effective component when used in combination
with fludarabine and thiotepa. Studies indicate that treosulfan-based conditioning regi-
mens are associated with significantly reduced incidences of non-hematologic acute to-
xicities commonly observed in allogeneic HSCT recipients undergoing standard condi-
tioning therapy, allowing for fast and sustained engraftment. Overall, the combination of
treosulfan, fludarabine, and thiotepa represents a promising approach to conditioning in
HSCT, particularly for patients at high risk of complications (247).

To further reduce the risk of graft failure (GF), several strategies may be considered,
including the addition of thiotepa to the conditioning regimen, implementing a pretrans-
plant immune suppression (PTIS) phase with hypertransfusions, and utilizing hydroxyu-
rea and azathioprine before transplantation. The use of ATG or alemtuzumab may also be
beneficial (248).

Haploidentical Hematopoietic Stem Cell Transplantation
Clinical outcomes for children with hematologic malignancies undergoing haploidentical
HSCT have shown consistent improvement over time (249-253). However, those with
hemoglobinopathies face additional challenges, including hyperplastic BM and frequent
alloimmunization from prior transfusions. These issues contribute to a heightened risk of
GF and a TRM rate of 30% (248, 254-257).

To mitigate graft rejection in patients with thalassemia major undergoing haploidenti-
cal HSCT, innovative strategies have been introduced. One significant approach develo-
ped by Anurathapan et al. involves administering two cycles of PTIS using fludarabine
and dexamethasone (258). The conditioning regimen used was myeloablative and inclu-
ded ATG, busulfan, fludarabine, cyclophosphamide, and post-transplant cyclophospha-
mide (PTCY) administered on days +3 and +4, resulting in an engraftment rate of 90%.
This protocol demonstrated a low incidence of both acute and chronic GVHD, making
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haploidentical HSCT a favorable option for children without appropriately matched do-
nors (258).

Another regimen that incorporates rabbit ATG, thiotepa, fludarabine, cyclophospha-
mide, and 200 cGy TBI provides adequate immunosuppression to achieve successful
engraftment. Furthermore, administering PTCY at a dose of 50 mg/kg per day on days +3
and +4, in conjunction with tacrolimus, ensures effective in vivo T-cell depletion (TCD)
in haploidentical HSCT (259).

Sickle Cell Disease

Allogeneic HSCT is currently regarded as a curative treatment for severe sickle cell di-
sease (SCD) (260). It is most commonly offered to patients with serious SCD-related
complications including stroke, recurrent vaso-occlusive crises, episodes of acute chest
syndrome (ACS), and other significant organ damages (261-263). Table 16 outlines the
current indications for HSCT based on specific SCD complications and also the type of
donor that might be considered (i.e., MRD, haploidentical related donor, or MUD) (264).
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Table 16. Current Indications for HSCT in Patients with SCD (One or More of the Following
Complications)

Donor ‘ Indications for HSCT

* Stroke or CNS event lasting >24 h

* Impaired cognition/neuropsychological function with abnormal cere-
bral MRI/MRA

* Elevated transcranial Doppler velocity

* Recurrent ACS

* Recurrent pain/VOEs

MSD * Red cell alloimmunization

* Pulmonary hypertension/TRJV >2.5 m/s

* Osteonecrosis/AVN

* Recurrent priapism

* Sickle nephropathy

* Sickle retinopathy

* Sickle lung disease

* Stroke or CNS event lasting >24 h

* Elevated transcranial Doppler velocity unresponsive to hydroxyurea
or chronic blood transfusion therapy

* Recurrent ACS despite supportive care

* Recurrent pain/VOEs despite supportive care

* Red cell alloimmunization despite intervention plus established indi-
cation for chronic transfusion therapy

* Pulmonary hypertension/TRJV >2.5 m/s

* Recurrent priapism

* Sickle nephropathy

* Osteonecrosis /AVN

MUD

* Recurrent stroke despite adequate chronic transfusion therapy or pro-
gressive CNS changes

* Inability to tolerate supportive care though strongly indicated, e.g.
red cell alloimmunization, severe VOE and inability to tolerate hy-
droxyurea

Alternative
donor

ACS: acute chest syndrome, AVN: avascular necrosis, CNS: central nervous system, MRA: magnet-
ic resonance angiography, MRI: magnetic resonance imaging, MSD: matched sibling donor, MUD:
matched unrelated donor, TRJV: tricuspid regurgitation jet velocity, VOE: veno-occlusive episode

Given that there are no randomized clinical trials (RCTs) comparing stem cell transplant
with conservative approaches in patients with SCD, a multidisciplinary guideline panel
formed by the American Society of Hematology (ASH) addressed eight recommendati-
ons with very low certainty in the evidence, focused predominantly on which patients
should be considered for HSCT (Table 17) (265).
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Table 17.Summary of American Society of Hematology (ASH) Recommendations for HSCT in
Patients with SCD.

The ASH guideline panel suggests HLA-matched related HSCT rather than stan-
dard of care (hydroxyurea/transfusion) in patients with SCD who have experien-
ced an overt stroke or have an abnormal transcranial Doppler ultrasound.

! When considering transplantation for neurologic injury, children younger than
16 years who receive MSD HSCT have better outcomes than those older than 16
years.
) For patients with frequent pain, the ASH guideline panel suggests using matched
related allogeneic transplantation rather than standard of care.
3 For patients with recurrent episodes of ACS, the ASH guideline panel suggests

using matched related allogeneic transplantation over standard of care.

For patients with SCD with an indication for HSCT who lack an MSD, the ASH
4 | guideline panel suggests using transplants from alternative donors in the context
of a clinical trial.

For allogeneic HSCT, the ASH guideline panel suggests using either TBI <400
c¢QGy or chemotherapy-based conditioning regimens.

For children with SCD who have an indication for allogeneic HSCT and an
MSD, the ASH guideline panel suggests using MAC over RIC that contains mel-
phalan/fludarabine regimen.

For adults with SCD who have an indication for allogeneic HSCT and an MSD,
the ASH guideline panel suggests NMA conditioning over RIC that contains
melphalan/fludarabine regimens.

In patients with an indication for HSCT, the ASH guideline panel suggests using
allogeneic transplantation at an earlier age rather than an older age.

The ASH guideline panel suggests the use of HLA-identical sibling UCB when
available (with an adequate cell dose and good viability) over BM.

ACS: acute chest syndrome, BM: bone marrow, CB: cord blood HLA: human leukocyte antigen,
HSCT: hematopoietic stem cell transplantation, MAC: myeloablative conditioning, MSD: matched
sibling donor; NMA: non-myeloablative conditioning, RIC: reduced intensity conditioning, SCD:
sickle cell disease, TBI: total body irradiation, UCB: umbilical cord blood

Modifications to traditional MAC regimens, which typically involve busulfan in combi-
nation with high doses of cyclophosphamide and the addition of ATG to mitigate the risk
of graft rejection, have enhanced the outcomes of HSCT in pediatric patients with SCD.
However, adult patients may face significant toxicity from MAC regimens due to accu-
mulated end-organ damage (266).

To address these concerns, reduced-intensity conditioning (RIC) regimens have been
developed, incorporating fludarabine, melphalan, and thiotepa or total lymphoid irradia-
tion. These RIC regimens are designed to minimize the toxicities associated with MAC,
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making HSCT more acceptable and better tolerated for patients with SCD (267).

Furthermore, non-myeloablative (NMA) conditioning regimens, which are associated
with lower rates of GVHD and HSCT-related toxicity, have proven to be safe, feasible, and
effective in reducing complications related to SCD in severely affected adults (268, 269).

In the pediatric cell therapy unit of RIOHCT, the conditioning regimen for TDT pa-
tients is tailored based on the Pesaro (Locarelli) risk classification (LRC). For patients
classified as LRC I and II, the myeloablative BuCy regimen is employed and patients
with LRC III are considered for the myeloablative FluBuCy regimen. Additionally, the
favorable effects of serotherapy with ATG on engraftment have led to its widespread
adoption in our preparative regimens. This approach aims to enhance the likelihood of
successful engraftment while minimizing the risks associated with graft rejection. Over-
all, the combination of risk stratification and the incorporation of effective conditioning
regimens, including the use of ATG, reflects our commitment to optimizing outcomes for
TDT patients undergoing allogeneic HSCT.

Figures 15 & 16 illustrate our conditioning regimens for HSCT in patients with TDT
and SCD.

Figure 15. Myeloablative Conditioning (MAC): (BU-CY)
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Figure 16. Myeloablative Conditioning (MAC): (BU-FLU-CY)
e Major Thalassemia LRC Ill / (>15 Years old)
* Matched Related Donor (MRD) / Matched Unrelated Donor (MUD)*

{ )
- N A R Cyclosporine A
L ET TETTR SPEEY ST RP Sy Sy S S STIE IEERY Sh 0
13 a2 - a0 9 8 T 6 R T ) 21
L N
(MTX)

® ATG Rabbit; Thymoglobuline (2.5 mg/kg/day for PBSCT & 1.25 mg/kg for BMSCT, © Fludarabine (FLU) (30 mg/m”2/day from day -13 to -11)

from day -3 to -2, *from day -5 to -2) ° (MTX) (15 */day on day +1, 10 mg/m?*/day on
© Busulfan (BU) (from day -9 to -6; see text for Busulfan Dose) days +3, +6)
@ Cyclophosphamide (CY) (60 mg/kg/day from day -5 to -2) ©® Mycophenolate mofetil (MMF) (30 mg/kg/day [ Maximum daily
® Cyclosporine A (CsA) (from day -2; see text for CsA Dose) Dose : 2 gram] from day +1 up to day +21)

\ J
BMSCT; Bone Marrow Stem Cell Transplantation, PBSCT; Peripheral Blood Stem Cell Transplantation




ALLOGENEIC HEMATOPOIETIC STEM CELL TRANSPLANTATION 91

Haploidentical Hematopoietic Stem Cell Transplantation
Finding a suitable HLA-matched related or unrelated donor is possible for only a small
percentage of the SCD population. Consequently, there is considerable optimism regar-
ding using haploidentical family members, as this approach could expand access to HSCT
for many patients who currently lack viable treatment options for their SCD. However,
initial observational studies have indicated a higher incidence of GF and associated com-
plications in haploidentical HSCT than in transplants from sibling donors (270). GF was
more common among patients who underwent NMA conditioning with in vitro donor
TCD compared to those who received NMA conditioning with PTCY, MAC with in vitro
TCD, or MAC with PTCY. However, modifications to the NMA regimens, such as adding
thiotepa or increasing TBI dose from 2 Gy to 4 Gy alongside PTCY, significantly impro-
ved sustained engraftment rates. Furthermore, while optimized NMA regimens have de-
monstrated results comparable to MAC regimens, chemotherapy-based MAC regimens
utilizing fludarabine and treosulfan have become the most commonly used preparative
regimens for haploidentical HSCT in SCD in recent years (271-274).

Fanconi Anemia and Other Hereditary Bone Mar-
row Failure Syndromes

Fanconi Anemia
Allogeneic HSCT is currently the only curative option for hematological disorders in pa-
tients with Fanconi anemia (FA). This treatment has the potential to address bone marrow
failure (BMF) and prevent clonal hematopoietic disorders associated with FA (275, 276).
Established indications for HSCT in FA include severe cytopenia, progression of mo-
derate cytopenia, poor prognosis cytogenetic abnormalities, and the presence of overt
myelodysplastic syndrome (MDS) or AML. Figurel?7 illustrates the hematologic moni-
toring and decision-making process for patients with FA following diagnosis (277).

Figure 17. Decision-making process for patients with Fanconi anemia
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The initial conditioning regimens for FA included high doses of cyclophosphamide
and TBI (278). However, due to the hypersensitivity of FA cells to high doses of cyclo-
phosphamide and radiation (279), reducing these doses has helped decrease TRM, but it
has also led to poor engraftment and graft function (280). As an alternative, fludarabine,
an antimetabolite with strong immunosuppressive properties, has been incorporated into
conditioning regimens. Fludarabine does not have DNA cross-linking properties, which
helps reduce the incidence of toxicity and GVHD in patients with FA (281). Fludarabine
is known for its immunosuppressive effects and is often used in conditioning regimens
prior to allogeneic HSCT due to its ability to minimize toxicity while effectively sup-
pressing the immune response. In the context of treating hematological malignancies,
fludarabine has demonstrated efficacy in various settings, including its incorporation into
regimens with RIC. This approach allows for better tolerance in patients with compromi-
sed BM function, such as those with FA, while leveraging the immunosuppressive pro-
perties of fludarabine to facilitate successful engraftment and enhance the effectiveness
of the transplant.

Our main preparative regimen for HSCT in FA patients is a radiation-free, fludarabine-
based conditioning consisting of fludarabine, intravenous (IV) busulfan, reduced dose of
cyclophosphamide, and ATG [Figure 18].

As mentioned, patients with FA have a DNA repair defect and consequently are more
sensitive to DNA cross-linking agents like busulfan. Due to the narrow therapeutic in-
dex of busulfan, it is recommended to dose using therapeutic drug monitoring (TDM)
to decrease toxicity and prevent graft rejection. Precision dosing of busulfan is usually
reflected by measuring the area under the plasma concentration-time curve (AUC) or
concentration at steady state (Css). However, this approach is not routinely used in FA
patients, and data about pharmacokinetics (PKs)-guided busulfan dosing in patients with
FA is scarce. In a study by Mehta et al., an optimal busulfan Css level of <350 ng/mL has
been proposed (282).

The incorporation of TDM for busulfan dosing aims to further optimize the balance
between efficacy and safety. However, the lack of robust data on PK-guided busulfan do-
sing in FA patients highlights the need for additional research to establish optimal dosing
strategies and improve outcomes for these high-risk individuals.
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Figure 18. Myeloablative Conditioning (MAC): (BU-FLU-CY)
¢ Fanconi Anemia (FA)
e Matched Related Donor (MRD) / Matched Unrelated Donor (MUD)*
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Haploidentical Hematopoietic Stem Cell Transplantation

In the absence of a well-matched unaffected related donor, and considering that many
patients lack a suitable MUD, patients may be candidates for alternative donor transplan-
tation. This is especially pertinent for those experiencing disease progression or clonal
evolution. Haploidentical HSCT combined with low-dose PTCY (25 mg/kg on days +3
and +4) offers an immediately available option for nearly all patients. It has been reported
as a well-tolerated and effective approach for individuals with FA, demonstrating promi-
sing engraftment rates and a manageable risk of GVHD (283, 284).

The most commonly used conditioning regimen for patients with FA undergoing ha-
ploidentical HSCT includes fludarabine, cyclophosphamide, and TBI, followed by the
administration of ATG (285). Additionally, studies utilizing radiation-free preparative re-
gimens with moderate-dose alkylating agents have demonstrated promising engraftment
and survival rates. However, these regimens have been associated with a notably higher
incidence of severe acute GVHD compared to TBI-containing regimens, whether or not
they include low-dose alkylating agents (286-288).

Furthermore, serotherapy with ATG has been linked to a significant reduction in
GVHD incidence and an increase in OS without any effect on GF (289).

Graft manipulation techniques that focus on the selective depletion of T-cell receptor
(TCR)-af and CD19+ lymphocytes have been also employed in haploidentical HSCT for
patients with FA. These methods have resulted in good engraftment rates, a low incidence
of post-HSCT complications, and excellent survival outcomes (275).

Diamond-Blackfan Anemia
Diamond-Blackfan anemia (DBA) is a congenital disorder characterized by pure red cell
aplasia (PRCA), associated with constitutional abnormalities and an increased risk of de-
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veloping hematologic malignancies such as AML/MDS, as well as non-hematologic can-
cers like osteosarcoma and colon cancer. HSCT is currently the only curative treatment
option for patients with hematological manifestations of DBA (290-292). The indications
for HSCT include (293):
¢ Steroid-unresponsive, defined as no increase in reticulocyte count at a dose of at
least 1 mg/kg/day prednisone
» Steroid-responsive but requires more than 0.3-0.5 mg/kg/day prednisone to main-
tain acceptable hemoglobin (Hb) levels
e Growth impairment or other unacceptable toxic effects of steroids, even on low
doses, including weight gain, irritability, insomnia, hypertension, hyperglycemia,
osteoporosis, and skin alterations
e Transfusion dependency
o Clonal evolution or myelodysplasia or clinically relevant thrombocytopenia or
neutropenia
MAC using busulfan (and more recently treosulfan) combined with fludarabine is cur-
rently recommended as the standard regimen. Due to the need for multiple transfusions
and to prevent GF, ATG is included in the conditioning protocol. It is important to note
that TBI should be avoided, as patients with DBA are already at an increased risk of de-
veloping malignancies (293).
Our conditioning regimen for these patients consists of busulfan and cyclophosphami-
de (Bu-Cy), with an alternative option being busulfan, fludarabine, and thiotepa (Bu-Flu-
Thiotepa), plus ATG.

Congenital Amegakaryocytic Thrombocytopenia

Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare inherited BMF syndro-
me (IBMFS) that carries an increased risk of progressing to trilineage BM aplasia within
the first decade of life, as well as developing myeloid malignancies. Although HSCT is
the only curative treatment available, the optimal timing for HSCT remains uncertain; it
is unclear whether transplantation should occur at the time of diagnosis when the patient
requires transfusion support, or upon the progression of BM aplasia or clonal evolution
(294, 295).

MAC is the preferred preparative regimen. However, in patients who develop severely
hypocellular BM, and in the absence of clonal aberrations and alloimmunization to plate-
let transfusions, RIC may be considered.

At the Pediatric Cell Therapy Unit of RIOHCT, we utilize a fludarabine-based MAC
regimen. Since these patients are often multiply transfused, ATG is also included in the
conditioning protocol.
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Acquired Bone Marrow Failure: Severe Aplastic
Anemia and Paroxysmal Nocturnal Hemoglobinuria

Severe Aplastic Anemia

Severe aplastic anemia (SAA) is an immune-mediated BMF disorder characterized by
destruction of hematopoietic progenitor cells (HPCs) due to a cytotoxic T-cell-media-
ted autoimmune response, resulting in pancytopenia. For children with SAA, allogeneic
HSCT from a matched sibling donor (MSD) is the recommended first-line treatment,
with survival rates ranging from 85% to 97%. This strategy has demonstrated superior
outcomes in patients who undergo upfront transplantation compared to those who receive
immunosuppressive (IS) therapy (296-298).

In a study conducted by the UK Pediatric Bone Marrow Transplantation (BMT) Wor-
king Party, the Pediatric Diseases Working Party, and the Severe Aplastic Anemia Wor-
king Party of the European Society for Blood and Marrow Transplantation (EBMT), the
evaluation of upfront MUD stem cell transplant in pediatric patients with SAA revealed
outcomes comparable to HSCT from MSDs. Furthermore, MUD HSCT demonstrated
better results than IS therapy and was superior to unrelated donor HSCT following IS
therapy failure. The study recommends considering upfront MUD HSCT as a first-line
therapy for pediatric patients who do not have an MSD (299).

Currently, many centers utilize a 10/10 MUD as a frontline treatment option for young
patients when an MSD is unavailable and when HSCT from a suitable MUD donor can
be performed within 2-3 months of diagnosis. Figure 19 illustrates the hierarchical ma-
nagement approach for children with SAA.




Pediatric Hematopoietic Stem Cell Transplantation Protocols

©
(o]

Figure 19. Management of severe aplastic anemia (SAA) in pediatrics
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The NMA reduced-toxicity conditioning regimen consisting of fludarabine (30 mg/m?/
day for 4 days) and cyclophosphamide (25 mg/kg/day for 4 days) is recommended by the
European Working Group (EWOG) of MDS and SAA as the chemotherapy backbone for
allogeneic HSCT in pediatric patients with SAA (300). This regimen has demonstrated
favorable outcomes in retrospective studies (301-303).

The incorporation of serotherapy with rabbit or horse ATG (rATG/hATG) or alemtuzu-
mab has improved outcomes of HSCT in SAA (304, 305). While rATG is associated with
a lower risk of acute and chronic GVHD, it also presents a higher incidence of oppor-
tunistic infections and mixed chimerism compared to hATG (306, 307). The cumulative
doses of rATG for children undergoing HSCT vary based on donor type and graft source,
typically ranging from 40 to 60 mg/kg for Grafalon and 8 to 10 mg/kg for Thymoglobulin
(300).

Alemtuzumab has also been shown to reduce both acute and chronic GVHD; however,
it is associated with a higher rate of GF.

Overall, the choice between rATG, hATG, and alemtuzumab should be tailored to in-
dividual patient factors, including donor availability and specific clinical circumstances
(308, 309).

Hematopoietic Stem Cell Transplantation from Alternative

Donor
According to the treatment algorithm for SAA, stem cell transplantation from alternative
donors, such as haploidentical or UCB donors, may be considered as salvage for patients
who do not have an MSD or MUD and fail to respond to IS therapy. Although haploiden-
tical HSCT offers donor availability for nearly all patients, it is associated with significant
challenges, including a high rate of GF, GVHD, delayed immune recovery, and severe in-
fections, which can hinder successful outcomes (310-313). Ex vivo TCD grafts utilizing
CD34+ cell enrichment and the infusion of large doses of CD34+ cells from mobilized
peripheral blood (PB) have demonstrated rapid engraftment; however, this approach has
also been linked to an increased incidence of infectious complications due to delayed
immune recovery (314). To address the infectious complications stemming from delay-
ed immune recovery, strategies such as the selective elimination of af+ T cells—while
preserving natural killer (NK) cells and y6+ T cells in the graft—have been evaluated.
Additionally, a novel approach aims to remove naive T cells responsible for GVHD while
preserving CD34+ progenitor cells and CD45RA— memory T cells that are specific for
opportunistic pathogens (315, 316).

At RIOHCT, if HSCT from BM as a graft source is not feasible, we utilize in vivo
T-cell depleted PBSC transplantation. Our preferred conditioning regimen consists of cy-
clophosphamide and ATG when HSCT is performed using an MRD or MUD [Figure 20].
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Figure 20. Myeloablative Conditioning (MAC): (CY-ATG)
e Severe Aplastic Anemia (SAA)
* Matched Related Donor (MRD) / Matched Unrelated Donor (MUD)*
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Given the risk of cyclophosphamide-induced cardiotoxicity, it is crucial to exercise cau-
tion when increasing the cumulative dose of cyclophosphamide used in the conditioning
regimen and in PTCY for GVHD prophylaxis. For patients at significant risk of develo-
ping cardiotoxicity, a conditioning regimen based on fludarabine and cyclophosphamide,
with a reduced PTCY dose lowered from 100 mg/kg to 80 mg/kg, is a viable alternative
[Figure 21] (317, 318).

Figure 21. Myeloablative Conditioning (MAC): (FLU-CY-ATG)
* Severe Aplastic Anemia (SAA)
* Matched Related Donor (MRD) / Matched Unrelated Donor (MUD)*
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Additionally, due to the late toxicity associated with radiation in pediatric patients, we
continue to use a chemotherapy-based preparative regimen that includes in vivo TCD
with ATG for haploidentical HSCT in these patients [Figure 22].

Figure 22.Myeloablative Conditioning (MAC): (BU-FLU-CY-ATG)
» Severe Aplastic Anemia (SAA)
* Haploidentical Stem Cell Transplantation
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Paroxysmal Nocturnal Hemoglobinuria

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired clonal disorder of he-
matopoietic stem cells (HSCs) due to loss of expression of the CD55 and CD59 proteins,
marked by uncontrolled activation of the terminal complement system on blood cell sur-
faces. This disorder can result in symptoms like intravascular hemolysis, thrombosis, and
BMF. However, in pediatric patients, the most significant manifestation is usually BMF,
rather than the typical symptoms seen in adults with PNH (319, 320).

While HSCT remains the only curative treatment for patients with PNH (312, 321),
the emergence of terminal complement component 5 (C5) inhibitors like eculizamab and
ravulizumab has limited the criteria for HSCT. Currently, HSCT is primarily reserved
for patients who experience BMF, refractory transfusion-dependent hemolytic anemia,
disease transformation to MDS/AML, or recurrent thromboembolic events that do not
respond to C5 inhibitors (322-328).

Regarding the conditioning regimen, both MAC and RIC can effectively eradicate the
PNH clone (320). However, due to the advantages of RIC in preserving fertility and the
increased NRM associated with MAC, there has been a shift in preference toward RIC.

Pantin et al. reported long-term survival in 15 out of 17 PNH patients who under-
went MRD transplantation using a fludarabine/cyclophosphamide + ATG-based regimen
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(329). In another study, the RIC regimen eradicated the PNH clone within two months
post-transplant, with donor-type engraftment persisting six months after the procedure
(330).

Nevertheless, further research is needed to establish the benefits of RIC over MAC in
reducing TRM and achieving a cure for PNH.

Our preferred preparative regimen for patients with PNH at the Pediatric Cell Therapy
Unit of RIOHCT is the RIC regimen using fludarabine/cyclophosphamide + ATG for
MRDs and a combination of busulfan/cyclophosphamide + ATG for MUDs [Figures 23,
24].
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Pediatric Myelodysplastic Syndromes Including
Refractory Cytopenia and Juvenile Myelomonocyt-
ic Leukemia

Pediatric MDS represents a varied group of clonal disorders, accounting for less than 5%
of hematologic malignancies in children. These syndromes frequently manifest alongside
IBMFSs (331). Allogeneic HSCT is the standard treatment for many children with MDS
and is typically offered to those with MDS characterized by excess blasts, those with
MDS secondary to previous chemoradiotherapy, and those with refractory cytopenia of
childhood (RCC) associated with monosomy 7, complex karyotypes, severe neutropenia,
or dependence on transfusions (332, 333). Approximately 30% of pediatric MDS patients
may progress to acute leukemia, typically within two years of diagnosis (334). Studies
show that following HSCT in pediatric MDS, approximately 20% of patients relapse,
while 21-35% experience NRM (335-337). Studies from the Center for International
Blood and Marrow Transplant Research (CIBMTR) and the EBMT have shown compa-
rable OS probabilities of around 35% for both pediatric and adult patients undergoing all-
ogeneic HSCT for MDS (338, 339). While the stem cell source and the donor type seem
to have minimal effect on transplant outcomes in these patients (340, 341), modifying the
conditioning regimen and modulating the recipient’s immune system are being explored.
The intensity of the conditioning regimen, particularly concerning the alkylating agent
busulfan, has been scrutinized in numerous studies, which have produced mixed findings.
Retrospective studies evaluating RIC versus MAC in patients with MDS indicate that
RIC leads to lower TRM, but a higher cumulative incidence of relapse (CIR), resulting
in similar OS rates between the two approaches (342-345). Meanwhile, PK-guided IV
administration of busulfan has not shown any variation in OS between RIC and MAC
(346). Notably, in a cohort study by Kobos et al., implementation of a busulfan-based
conditioning regimen, with the majority of patients receiving a TCD allograft, a 5-year
OS probability was 61% (347). In contrast, a study by Maher et al. involving patients with
therapy-related myelodysplastic syndromes (t-MDS), found a 5-year OS probability of
36%, with a significant non-response rate (348).

Treatment with treosulfan plus fludarabine has had encouraging results in a retrospec-
tive real-world multicenter study conducted by the EBMT (349). Importantly, the RIC
using treosulfan and fludarabine appears to maintain a myeloablative effect while mini-
mizing extra hematological toxicity. To mitigate the severity of acute GVHD, prophylaxis
should incorporate in vivo TCD (such as ATG or anti-T-lymphocyte globulin (ATLG))
along with a regimen of cyclosporine A (CSA) and methotrexate, similar to the recom-
mendations for MAC (350). The inclusion of thiotepa in preparative regimens for all-
ogeneic HSCT in patients with MDS was studied across various graft sources following
MAUC, with disappointing outcomes due to a high incidence of TRM (351).

Haploidentical HSCT with the preconditioning regimen including a combination of
cytarabine, busulfan, cyclophosphamide, simustine, and rATG led to 2-year OS and DFS
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of 76.0% (352). Results of a T-cell replete haploidentical HSCT with ATG, CSA, myco-
phenolate mofetil (MMF), and short-term methotrexate, in a cohort of 27 children with
MDS, at a median follow-up of 24.1 months, showed a 3-year OS of 81.9% and CIR and
NRM of 7.4%. Additionally, 52.6% of patients experienced grade II-IV acute GVHD,
while 42.3% developed overall chronic GVHD over three years (353). In a retrospective
cohort of pediatric patients with MDS who underwent decitabine-containing and Bu/
Cy-based MAC, 65.4% of patients developed grade II-IV acute GVHD within 100 days,
38.5% developed chronic GVHD and the OS rate at three years was 84.8% (354).

In conclusion, the success of allogeneic HSCT in MDS is influenced by the condi-
tioning regimen. While MAC lowers relapse rates, it also poses a higher risk of toxicity,
making it more appropriate for younger patients with less comorbidity. Although RIC has
been investigated, its effectiveness for MDS remains uncertain. Our preferred preparative
regimen is MAC, which consists of busulfan, cyclophosphamide, and ATG.

Juvenile Myelomonocytic Leukemia
Allogeneic HSCT remains the only established curative approach for most pediatric pa-
tients with juvenile myelomonocytic leukemia (JMML), resulting in a cure rate of over
50%. However, a small proportion of patients may experience spontaneous clinical remis-
sions and survive for extended periods without the need for HSCT (355, 356).
Cumulative evidence indicates a relationship between specific genetic mutations and
clinical outcomes, highlighting the importance of a genotype-based management ap-
proach. Research on genotype-phenotype correlations suggests that children with JIMML
who have NF1, somatic PTPN11, or KRAS mutations, as well as a significant proportion
of those with somatic NRAS mutations, should be promptly considered for allogeneic
HSCT (Table 18). In contrast, children with germline CBL mutations, who frequently
experience spontancous disease regression, should not undergo HSCT immediately after
diagnosis; instead, a “watch and wait” strategy should be adopted (355, 357).

Table 18. Indications for HSCT in Pediatric Patients with JMML Based on Genetic Subgroups

Genetic Subgroup | Indication for HSCT

Low HDF and high platelet count: “watch and wait” strategy
Somatic NRAS Disease progression: Swift HSCT (+ pretransplant azacitidine)
with low-intensity GVHD prophylaxis

Somatic KRAS HSCT with high-intensity GVHD prophylaxis
Somatlg PTPNTI, Swift HSCT (+ pretransplant azacitidine) with low-intensity

Germline NF1, GVHD prophylaxis

Normal finding propay

Germline CBL A “watch and wait” strategy

HSCT in cases of disease progression

GVHD: graft-versus-host disease, HbF: fetal hemoglobin, HSCT: hematopoietic stem cell trans-
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plantation

The standard conditioning regimen for HSCT in pediatric patients with JIMML, as re-
commended by the EWOG-MDS, consists of a three-alkylator combination of busulfan,
cyclophosphamide, and melphalan (335, 358). This regimen is also utilized at RIOHCT
[Figure 25].

Figure 25. Myeloablative Conditioning (MAC): (BU-CY-MEL)
* Juvenile Myelomonocytic Leukemia (JMML)
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Inborn Errors of Immunity

Inborn errors of immunity (IEIs) or in other words, primary immunodeficiency disorders
(PIDs) include a diverse and extensive collection of disorders caused by defects in the
development and/or function of the immune system and HSCT is a recognized curative
option for children suffering from IEIs.

Historically, transplantation in patients with IEIs relied on a combination of the alkyla-
ting agents busulfan and cyclophosphamide. However, due to the significance of IEI-rela-
ted comorbidities, these standard myeloablative preparative regimens led to considerable
toxicity, a high rate of TRM, and long-term complications. Although initial outcomes
may have been satisfactory, increased awareness of acute conditioning toxicities and the
recognition of long-term effects have led to a decline in the use of conventional myeloab-
lative preparative regimens at most centers. Most of these regimens included cyclophos-
phamide with a total dose of 200 mg/kg and the reported OS by their patients was around
50% (359-361). The use of conditioning regimens with lower toxicity is now typically
favored for patients with IEIs because there is no malignant disease to eliminate, stable
mixed chimerism can lead to cure for various conditions, and many patients undergoing
HSCT have chronic infections and existing organ-related health issues (362). These regi-
mens are almost all, fludarabine-based and have led to very high survival rates, reaching
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a 90-100% OS (363-366). treosulfan in combination with either cyclophosphamide or
fludarabine has been reported to achieve an OS of 81% (367). A more recent retrospec-
tive study of 160 consecutive patients with IEIs who underwent HSCT with treosulfan,
fludarabine, and alemtuzumab, showed an OS of 83% (368). In a prospective multicenter
study, an RIC regimen including high-dose fludarabine, serotherapy, and low-dose or
targeted busulfan for chronic granulomatous disease (CGD) patients achieved a 93% OS
after a median follow-up of 21 months (363). In patients with severe combined immu-
nodeficiency (SCID) using low-exposure busulfan (cumulative area under the concentra-
tion-time curve (AUC) of 30 mgxh/L), with a median follow-up of 4.5 years, resulted in
the survival of all patients (369). In hemophagocytic lymphohistiocytosis (HLH), an RIC
using melphalan, fludarabine, and intermediate-timing alemtuzumab, achieved a 1-year
OS of 80.4% (365). In children transplanted from a haploidentical family donor with a
MAC regimen and PTCY for an IEI, after a median follow-up of 25.6 months, the 2-year
OS rate was 77.7% (370). In another cohort of patients with IEIs undergone haploiden-
tical HSCT with mostly busulfan, fludarabine, and PTCY, after a median follow-up of 2
years, the overall 2-year survival rate was 66%, slightly varying between SCID (64%)
and non-SCID (65%) patients and the study noted a 33% rate of grade II-IV acute GVHD
and a 14% rate of grade III-IV (371). A clinical trial evaluating a novel radiation-free
and serotherapy-free RIC, using pentostatin, low-dose cyclophosphamide, and busulfan,
along with PTCY in patients with IEIs, after a median follow-up of 1.9 years, reported a
1-year OS rate of 90%, with 80% of patients free from grade III-IV acute GVHD and GF
at 180 days post-transplant (372).

In conclusion, the integration of RIC in HSCT for PID patients represents a significant
advancement, likely improving survival while reducing early toxicities. As gene thera-
py becomes mainstream, non-toxic conditioning followed by autologous gene-corrected
stem cell procedures could greatly minimize treatment-related complications for IEI pa-
tients. Future conditioning strategies appear promising, with potential advancements in
treatment protocols.

T-Cell Depletion

While ex vivo TCD grafts enriched with CD34+ cells and infused with high doses of
CD34+ cells from mobilized PB have demonstrated rapid engraftment, they were also
linked to an increased incidence of infectious complications due to delayed immune re-
constitution (316).

To address infectious complications arising from delayed immune recovery, new stra-
tegies have been developed to selectively eliminate TCR-af+ T cells while preserving NK
cells and TCR-yd+ T cells in the graft. Additionally, a novel approach has been explored
that removes naive T cells responsible for GVHD while retaining CD34+ progenitor cells
and CD45RA— memory T cells specific for opportunistic pathogens (315, 316).

Recent studies have demonstrated the beneficial effects of this approach in both ma-
lignant and non-malignant disorders. The outcomes of haploidentical or mismatched
unrelated HSCT using CD3+ TCR-af+/CD19+ depleted grafts have been evaluated in
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patients with IEIs. After a median follow-up of 20.8 months, the OS and EFS rates at
three years were found to be 83.9% and 80.4%, respectively. The cumulative incidence of
grade II-IV acute GVHD was 22% =+ 8.7%, with no instances of chronic GVHD reported.
Furthermore, the cumulative incidences of GF, cytomegalovirus (CMV) and adenoviral
infections, and TRM at one year were 4.2% = 4.1%, 58.8% + 9.8%, and 16.1% + 7.4%,
respectively (373).

Severe Combined Immunodeficiency

SCID is a diverse group of IEIs characterized by impaired T-lymphocyte differentiation
and proliferation, leading to the absence of autologous T lymphocytes. However, B-lym-
phocytes and NK cells may also be impacted. Nearly 20 different types of SCID have
been identified. Some of the more commonly recognized types are classified based on
their genetic mutations and the presence of T cells, B cells, and NK cells (374).

Once the diagnosis of SCID is confirmed, it is crucial to urgently identify a suitable do-
nor. While HSCT from a matched sibling or related donor is considered the gold standard,
alternative options should be pursued in the absence of such a donor. These alternatives
include 10/10 MUD, haploidentical family donors, or mismatched unrelated CB (375).

The selection of a conditioning regimen is determined by the donor type and the SCID
phenotype, as well as the genotype when it is available. A preparative regimen prior to
HSCT from an MSD is not recommended for patients with the following genotypes:

o JAK3, IL2Ry (TB+ NK-)

e IL7Ra, CD3 3, ¢, £, CD45 (T-, B+, NK+)

o ADA
Although achieving full myeloid chimerism is not essential, obtaining some level of mye-
loid engraftment is advantageous for promoting B cell reconstitution and sustaining long-
term thymic output. Patients who do not achieve sufficient myeloid engraftment or who
have a declining naive T-cell compartment may experience significant complications.
Therefore, if feasible for the patient, conditioning is recommended for all SCID patients
to ensure optimal clinical and immunological outcomes (375, 376).

Non-SCID Inborn Errors of Inmunity

* Hemophagocytic Lymphohistiocytosis

HLH is a serious hyperinflammatory condition marked by the uncontrolled accumulation
of macrophages and lymphocytes resulting in excessive cytokine production. It is classi-
fied into two forms: primary (genetic) and secondary (acquired).

Primary HLH encompasses familial HLH (FHL), which is the most prevalent form,
as well as X-linked lymphoproliferative disease (XLP), Griscelli syndrome type 2 (GS2),
and Chediak-Higashi syndrome (CHS) (377).

Given the high risk of reactivation in patients with primary HLH, stem cell transplan-
tation is currently regarded as the only curative option for replacing the defective immune
system (378).
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Since not all genetic causes are clearly defined, a significantly reduced expression
of relevant proteins, diminished lymphocyte degranulation, a positive family history, or
persistent/recurrent disease may be enough to diagnose primary HLH. Identifying likely
pathogenic germline variants in HLH-related genes alone is insufficient for diagnosing
primary HLH without additional supporting evidence from functional assays or prior pa-
tient reports. Specifically, the presence of a heterozygous or homozygous A91V perforin
variant in a patient with HLH does not automatically indicate the need for HSCT unless
it is accompanied by a “severe” mutation (379, 380).

* In asymptomatic carriers of biallelic HLH-associated mutations who has a familiy
history of HLH in infancy, early HSCT should strongly be considered (378).

For patients with secondary HLH who do not have germline mutations, allogeneic HSCT
is typically not recommended. However, if these patients show a suboptimal response to
the treatment of the underlying disease, allogeneic HSCT may be considered as a thera-
peutic option.

At present, there is no evidence to suggest that heterozygous siblings or parents of a
homozygous or compound heterozygous index patient face an elevated risk of developing
HLH that could be passed on to the transplant recipient. Therefore, heterozygous muta-
tion carriers can be considered as potential donors (378).

%k It is important to note that active HLH at the time of HSCT is linked to a poorer out-
come.

* Chronic Granulomatous Disease

CGD is an inherited IEI characterized by X-linked and autosomal recessive patterns of
inheritance that impairs neutrophils, monocytes, and macrophages’ production of super-
oxide anions and other reactive oxygen species. This deficiency results in compromised
microbial killing, leading to life-threatening bacterial and fungal infections, immune dys-
regulation, and hyperinflammation (381). HSCT should be regarded as the main curative
treatment for all genetic forms of CGD, including the rare variant caused by mutations in
CYBCI1 (382, 383). It is advisable to pursue transplantation as early as possible, before
the onset of disease-related organ damage (384).

While stable donor myeloid chimerism of over 15-20% is adequate to reduce the risk
of infections, ideally, a high level of donor myeloid chimerism exceeding 80% will be
achieved. Additionally, the decision to consider retransplantation is typically based on the
patient’s symptom history rather than chimerism levels alone (385).

* Optimal management of autoinflammation, such as colitis, is recommended before
HSCT;: however, this is not always feasible.
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In X-linked CGD, female carriers who are family donors may exhibit inflammatory and
autoimmune symptoms. Generally, they should be avoided as potential HSC donors; ho-
wever, in the absence of suitable alternatives, they may be considered after thorough
evaluation, including dihydrorhodamine (DHR) flow cytometry analysis (385-387).

e Leukocyte Adhesion Deficiency
Leukocyte adhesion deficiency (LAD) syndromes are a group of rare autosomal recessive
IEIs marked by the inability of leukocytes to adhere to the endothelial lining of blood
vessels, which hinders their migration to extravascular spaces (388, 389). Most individu-
als affected by LAD-I and LAD-III experience significantly reduced life expectancy, with
a mortality rate exceeding 75% by the age of two (390). Successful allogeneic HSCT can
restore leukocyte function in patients with LAD-I and LAD-III, eliminating the need for
additional treatments (391).

* Combined Immunodeficiency

Combined immunodeficiency (CID) is a subtype of SCID characterized by a less severe
quantitative or functional defect in T cells, often accompanied by a B cell deficiency.
CID can manifest as an isolated immune disorder, such as CD40 ligand deficiency, Bare
lymphocyte syndrome, CD27-CD70 deficiency, or DOCKS deficiency. It may also occur
as part of a syndrome, such as Wiskott-Aldrich syndrome (WAS) or autosomal dominant
anhidrotic ectodermal dysplasia with immune deficiency (AD EDA-ID) (392-396).

Special attention should be given to the conditioning regimen in certain subgroups of
CIDs, where mixed chimerism is linked to poorer outcomes, such as in WAS. In these
cases, MAC regimens are typically favored to ensure sustainable donor stem cell engraft-
ment (392, 394, 397).

At RIOHCT, our preferred conditioning regimen for patients with IEIs is a RIC pro-
tocol that includes fludarabine, melphalan, and serotherapy [Figure 26]. However, for
conditions like WAS, we typically utilize a MAC regimen consisting of busulfan and
fludarabine.

Figure 26. Figure | Reduced Intensity Conditioning (RIC): (Flu-Mel)
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Inborn Errors of Metabolism and Osteopetrosis

HSCT is an effective therapeutic strategy for certain inborn errors of metabolism (IEMs),
particularly in preventing disease progression rather than reversing established manifes-
tations. Timely HSCT is crucial for stabilizing the clinical situation and significantly
improving long-term outcomes for patients with IEMs (398).

Lysosomal Storage Diseases

Lysosomal Storage Diseases (LSDs) are characterized by genetic defects in specific pro-
teins involved in lysosomal pathways (399). HSCT leads to the continuous secretion of
enzymes by donor-derived myeloid cells, which are then absorbed by enzyme-deficient
host cells (400).

In contrast to enzyme replacement therapy (ERT), donor-derived cells can migrate
through the blood-brain barrier (BBB) and differentiate into microglia, which secrete
the deficient enzyme into the CNS, thereby enhancing neurocognitive outcomes (401).
However, the engraftment of donor myeloid cells in the brain occurs gradually, taking up
to one year. This delay may not keep pace with neurological disease progression, which
can result in some patients experiencing slow improvement or even deterioration of CNS
function after HSCT (402, 403).

RIC and ex vivo TCD have been linked to high GF rates. Therefore, a MAC regimen
that includes fludarabine and busulfan is recommended for patients with LSDs (404).

* Mucopolysaccharidoses
Allogeneic HSCT, combined with pretransplant or peritransplant ERT, is considered the
standard treatment for Hurler Syndrome, the most severe phenotype of Mucopolysaccha-
ridosis Type I (MPS IH) (405).

For other types of MPS, including Hunter syndrome (MPS-II), Maroteaux-Lamy syn-
drome (MPS-VI), and Sly syndrome (MPS-VII), HSCT is considered an optional treat-
ment approach.

* Sphingolipidoses

1. Metachromatic Leukodystrophy

Metachromatic Leukodystrophy (MLD) is characterized by widespread demyelination of
the central and peripheral nervous systems (406, 407) and is classified into three subtypes
based on the age at presentation: late-infantile (up to 30 months), juvenile (30 months to
15 years), and adult (over 15 years) (408).

Both HSCT and hematopoietic stem cell gene therapy (HSCGT) are effective for en-
zyme replacement in the nervous system when administered early in the disease course
or before symptoms appear (409-412). However, HSCT is generally reserved for the atte-
nuated forms of the disease, specifically juvenile and adult types (411, 413, 414).

Late-infantile MLD, which is the most common and severe form, is typically not con-
sidered for allogeneic HSCT because it cannot prevent the progression of early-onset
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disease (415, 416).

2. Acid Sphingomyelinase Deficiency

Acid sphingomyelinase deficiency (ASMD), also known as Niemann-Pick disease
(NPD), is an ultra-rare multisystem genetic disorder characterized by the accumulation of
lipid substrates in the lysosomes of the liver, brain, spleen, lungs, and BM cells. ASMD is
classified into three subtypes: Type A, which represents the infantile neurovisceral form;
Type B, known as the chronic visceral form; and Type A/B, which is referred to as the
chronic neurovisceral type (417, 418).

HSCT can help correct metabolic defects, improve blood counts, and decrease en-
larged liver and spleen volumes; however, it does not address neurological issues, and
the reversal of growth retardation remains uncertain. Consequently, attempts to perform
HSCT in individuals with clinically apparent neurological disease should be regarded as
experimental, as this treatment does not correct or stabilize neurological conditions (418).

Peroxisomal Diseases

* X-Linked Adrenoleukodystrophy
X-linked adrenoleukodystrophy (ALD) is caused by the absence of the adrenoleukodys-
trophy protein, which impairs the transport of very long-chain fatty acids to the peroxi-
some for oxidative degradation. This deficiency leads to the accumulation of these fatty
acids in the CNS and adrenal tissues (419). ALD is categorized into four types: asympto-
matic, adrenal failure, adrenomyeloneuropathy, and inflammatory cerebral disease (420).

The most severe form is childhood cerebral ALD (CCALD), which is the only indica-
tion for stem cell transplant. HSCT has shown effectiveness in early cerebral inflamma-
tory disease, particularly when early magnetic resonance imaging (MRI) changes show
demyelination, as measured by the Loes score (2, 421). The Loes score, derived from
MRI scans, assists in making therapeutic decisions regarding HSCT. A score of less than
4 indicates a very carly stage, 4 to 8 indicates an early stage, 9 to 13 indicates a late stage
and a score above 13 indicates an advanced stage (422). Patients with a Loes score below
9, especially those with scores under 4, are considered suitable candidates for HSCT (423,
424). However, for advanced cerebral ALD, HSCT is contraindicated as the disease will
likely progress despite the transplant.

It is important to note that HSCT does not impact adrenal insufficiency or the later
development of myeloneuropathy in the spinal cord (2).

Mitochondrial Diseases

* Mitochondrial Neurogastrointestinal Encephalomyopathy
Mitochondrial neuro gastrointestinal encephalomyopathy (MNGIE) is an ultra-rare and
progressive autosomal recessive disorder presents with GI dysmotility, ptosis, peripheral
neuropathy, and white matter changes visible on brain MRI (425).

Pathogenic mutations in the thymidine phosphorylase (TYMP) gene lead to a deficien-
cy of thymidine phosphorylase, resulting in the toxic accumulation of plasma nucleosi-
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des, particularly thymidine, and deoxyuridine, which contribute to mitochondrial DNA
(mtDNA) instability (426, 427).

Currently, allogeneic HSCT is the only effective treatment that restores thymidine
phosphorylase activity and eliminates toxic levels of thymidine and deoxyuridine from
circulation. HSCT should be considered for younger patients and before severe GI dys-
motility develops. For those with advanced disease, HSCT is generally not recommended
(428-430).

Osteopetrosis

Osteopetrosis (OPT), resulting from defects in osteoclast differentiation or function, has
two patterns of inheritance: autosomal recessive osteopetrosis (ARO) and autosomal do-
minant osteopetrosis (ADO). ARO, also known as infantile malignant OPT, represents
the most severe form of the disorder. In contrast, ADO is characterized by adult onset and
is generally a more benign form of the condition (431).

Since osteoclasts originate from HSCs, the only curative and sustainable treatment for
OPT is currently allogeneic HSCT. This intervention is indicated in specific situations,
including hematological failure requiring transfusions, impending blindness, and other
clinical complications that significantly reduce quality of life or are incompatible with
long-term survival (432).

However, HSCT is generally not recommended for patients with the following genetic
forms of OPT: (432)

o CAII (Carbonic anhydrases II) — biallelic: Renal tubular acidosis (RTA)
In patients experiencing progressive visual and/or hearing loss, along with less
severe renal and CNS impairment, HSCT may be considered as a treatment option.
e CLCN7 —monoallelic: Intermediate or “benign” OPT
e OSTMI — biallelic: Infantile OPT with neurodegeneration
o PLEKHMI — biallelic: Intermediate OPT
e RANKL - biallelic: Infantile or intermediate osteoclast-poor OPT
Moreover, HSCT has been demonstrated to be ineffective in cases involving CLCN7
and OSTM1 mutations associated with CNS involvement. However, HSCT is strongly
indicated for patients under 1 year of age who exhibit limited disease progression and
minimal neurological damage. Therefore, a comprehensive neurological assessment is
essential for patients with these mutations (433).

The increased risk of GF due to BM space obliteration and extramedullary hemato-
poiesis (such as hepatosplenomegaly) necessitates utilizing a MAC regimen to ensure ef-
fective donor engraftment. The preferred preparative regimen is a combination of busul-
fan and fludarabine [Figures 27 & 28]. For patients with advanced disease, an alternative
regimen of treosulfan, fludarabine, and thiotepa may be considered (375, 431).

* Given the high risk of transplant-related complications in patients with OPT, it is re-
commended that HSCT be performed at experienced centers, especially for recipients
of haploidentical transplantations.
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Figure 27. Myeloablative Conditioning (MAC): (BU-FLU)
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Lymphoblastic Lymphoma

The use of acute lymphoblastic leukemia (ALL)-type treatment has led to improved out-
comes for pediatric patients with T-cell lymphoblastic lymphoma (T-LBL), achieving an
event-free survival (EFS) rate of approximately 75-90%. However, patients with relapsed
or refractory (R/R) T-LBL face significantly poorer outcomes, with survival rates ranging
from 10-30%. Therefore, inducing a second remission through intensive chemotherapy,
followed by allogeneic hematopoietic stem cell transplantation (HSCT) and a total body
irradiation (TBI)-based conditioning regimen, is recommended (434).

At RIOHCT, our approach for treating R/R T-LBL is to utilize a regimen similar to that
used for T-cell ALL, employing a myeloablative conditioning (MAC) regimen followed
by allogeneic HSCT.

Research on management strategies for R/R primary B-cell lymphoblastic lymphoma
(pB-LBL) is limited due to the small number of affected patients. Nevertheless, conside-
ring the poor outcomes linked to this condition, it is recommended to adopt an aggressive
reinduction approach followed by consolidation with allogeneic HSCT, similar to the
treatment strategy employed for T-LBL (434).

* Autologous transplantation is not effective for R/R LBL (435).
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Relapsed/Refractory Mature B-Cell Non-Hodgkin Lympho-
ma (Burkitt Lymphoma and Diffuse Large B-Cell Lymphoma)

Due to the low incidence of non-Hodgkin lymphoma (NHL) in children, data on the use
of HSCT for treating R/R disease is limited, and there are no definitive guidelines for
choosing between autologous and allogeneic HSCT, (436) as outcomes for these approa-
ches appear to be similar (437).

In a study conducted by Rigaud et al., no significant difference was observed in the
five-year survival rates between patients who received allogeneic HSCT and those who
underwent autologous stem cell transplantation (ASCT), with rates of 50% and 54%,
respectively (438).

Most pediatric centers typically perform autologous HSCT for most patients, reserving
allogeneic HSCT for those with specific NHL histological subtypes, such as lymphoblas-
tic lymphoma (LBL), or patients with higher-risk or refractory disease. Based on adult
experience, the higher non-relapse mortality (NRM) associated with allogeneic HSCT
compared to autologous HSCT diminishes potential benefits from a lower relapse rate
attributed to graft-versus-lymphoma activity (436).

Pediatric patients with primary Burkitt lymphoma (BL) and diffuse large B-cell lym-
phoma (DLBCL) have excellent outcomes in frontline treatment, achieving five-year
EFS rates of nearly 90%. In contrast, those with R/R NHL experience significantly poorer
outcomes, with a cure rate of approximately 30% (437, 439-441). For patients with R/R
BL, research from the Center for International Blood and Marrow Transplant Research
(CIBMTR) found no significant difference in two-year EFS rates between allogeneic
HSCT (31%) and autologous HSCT (27%). Similar findings were observed in patients
with R/R DLBCL, where the five-year EFS rates were reported at 50% for allogeneic
HSCT and 52% for autologous HSCT (442).

At RIOHCT, our approach considers ASCT for patients with R/R BL and DLBCL,
utilizing a conditioning regimen similar to that used for Hodgkin lymphoma (HL).

It should be noted that patients with R/R DLBCL often do not benefit from ASCT if
they are primary refractory or experience early relapse. In such cases, alternative thera-
pies, including chimeric antigen receptor (CAR) T-cell therapy (if available), may be
more appropriate.

In the context of R/R BL, the conditioning regimens can include reduced-intensity
conditioning (RIC) to improve engraftment and minimize toxicity. Our strategy aligns
with current findings that emphasize the importance of effective reinduction regimens
before consolidation with ASCT to enhance survival outcomes. Overall, while ASCT
remains a viable option for R/R BL and DLBCL at RIOHCT, carefully considering each
patient’s unique clinical situation is essential in determining the most appropriate treat-
ment pathway.
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Hodgkin Lymphoma

The need for ASCT in pediatric patients with classical Hodgkin lymphoma (HL) should
be assessed through risk stratification, as most studies comparing ASCT and standard-dose
chemotherapy (SDCT) have not demonstrated any survival advantage for ASCT in cases of
first relapse (443, 444).

In line with European Network-Pediatric Hodgkin Lymphoma (EuroNet-PHL) strate-
gies, most pediatric patients do not receive radiation therapy (RT) as part of their first-line
treatment for classical HL. Additionally, the potential toxicities associated with ASCT
raise concerns in pediatric populations. Therefore, in the context of relapse, ASCT may
be substituted with SDCT combined with RT (445).

Risk stratification at the time of relapse is determined by pre-salvage risk factors,
which categorize patients into low and standard-risk groups. For high-risk patients,
the classification is defined by the failure to achieve a complete metabolic response on
18-Fluoro-deoxyglucose positron emission tomography (FDG-PET) following two lines
of salvage SDCT.

The EuroNet guidelines recommend a risk-stratified and response-adapted approach
to salvage therapy for pediatric classical HL, reserving ASCT for standard- and high-risk
patients while utilizing SDCT plus RT for low-risk patients to minimize toxicity without
compromising survival (Table 19) (445).

Table 19. Risk-Stratified and Response-Adapted Approach to Salvage Therapy for Pediatric
Classical HL

Treatment Re-
commendations

Inclusion Criteria

Early relapse after a maximum of 4 cycles of first-
line chemotherapy

Late relapse after a maximum of 6 cycles of first-li- Salvage therapy
Low ne chemotherapy with SDCT plus
Risk and all of the following: RT consolidation
* Stage at relapse is I-111 only

* No prior RT or relapse only outside prior RT field
* No excessive RT fields required in salvage

. ) Salvage therapy
Any of the following factors: with SDCT plus
* Primary progressive HL ASCT ;gESOhda-

* Early relapse after more than 4 cycles of first-line
chemotherapy

* Stage IV relapse

* Relapse in a prior RT field

* Relapse requiring RT in salvage therapy that is
considered as having unacceptable toxicity

Standard
Risk In selected stan-
dard-risk and/or

high-risk patients,

consolidation RT is
given after ASCT.
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Treatment Re-
commendations

Inclusion Criteria

Conventional
ASCT plus additio-
High Failure to achieve a negative FDG-PET after 2 nal treatments pre-
Risk lines of salvage SDCT and/or post-ASCT
or experimental

strategies

ASCT: autologous stem cell transplantation; FDG-PET: 18-fluoro-deoxyglucose positron emission
tomography, HL: Hodgkin lymphoma, RT: radiation therapy, SDCT: standard-dose chemotherapy

Several conditioning regimens have been developed to improve the outcomes of ASCT,
with progression-free survival (PFS) and overall survival (OS) rates ranging from 34% to
60% and 26% to 46%, respectively. Until recently, BCNU (1-3-bis(2-chloroethyl)-1-nitro-
sourea (carmustine))-based regimens, such as BEAM (carmustine, etoposide, cytarabine,
and melphalan), have been the most commonly used for R/R lymphoma, demonstrating
acceptable ASCT-related mortality rates (446-448). However, the limited availability of
BCNU in some countries, along with its association with late pulmonary complications—
such as chronic interstitial fibrosis and decreased lung diffusing capacity in 16% to 64%
of patients exposed to carmustine—has created a pressing need for alternative conditio-
ning regimens (449, 450). Bendamustine hydrochloride (BEN) is a cytotoxic agent with
a unique chemical structure that combines the alkylating properties of a mustard group
with the antimetabolite activity of a purine analog. In vitro studies have demonstrated that
bendamustine primarily activates apoptotic pathways in multi-drug-resistant malignant
lymphoma cell lines that do not respond to other alkylating agents (451-453).

BEAM and BEN-EAM (with bendamustine replacing BCNU) have been compared in
ASCT and have demonstrated comparable four-year PFS and OS rates, although acute
non-hematological toxicity is more prevalent in BEN-EAM (454).

Busulfan-based conditioning regimens are considered more intensive than BEAM
(455, 456). In a retrospective adjusted analysis conducted by Zaucha et al., the BU-MEL-
TT (busulfan, melphalan and thiotepa) regimen was utilized in patients with NHL, de-
monstrating a high complete response rate but similar PFS and OS compared to BEAM
(457). Additionally, Shin et al. reported that two-year EFS and OS were superior in busul-
fan-containing conditioning regimens compared to the BEAM/BEAC (BCNU, etoposide,
cytarabine, cyclophosphamide) group (458).

At RIOHCT, we utilize BEN-EAM [Figure 29] for pediatric patients with relapsed or
classical HL, and as an alternative, we employ BEN-BU-MEL (bendamustine, busulfan,
and melphalan) [Figure 30].
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Figure 29. Autologous Stem Cell Transplant (ASCT): (BEN-EAM)
e Lymphoma (Hodgkin & Non-Hodgkin)
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Figure 30. Autologous Stem Cell Transplant (ASCT): (BEN-BU-MEL)
e Lymphoma (Hodgkin & Non-Hodgkin)
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Neuroblastoma

For high-risk neuroblastoma (NB), the major international cooperative groups (German
Society for Pediatric Oncology and Hematology (GPOH), Children’s Oncology Group
(COG), and International Society of Pediatric Oncology (SIOP)) use intensive multi-
modal approaches that include induction with multiagent chemotherapy and surgical
resection, consolidation with RT, and myeloablative chemotherapy followed by ASCT,
treatment of measurable residual disease (MRD) with retinoids and immunotherapy using
a tumor-specific anti-disialoganglioside (GD2) antibody, granulocyte-macrophage colo-
ny-stimulating factor (GM-CSF), and interleukin (IL)-2 (381, 382). Table 20 outlines the
indications for ASCT in pediatric patients with NB.
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Table 20.Indications for ASCT in Pediatric Patients with Neuroblastoma

Clinical Condition ‘ Indication for ASCT

» Age >18 months at diagnosis with widespread metastatic
disease (INRG M)

* Any age with MYCN amplified tumors with INSS stages
2-4

Newly Diagnosed NB

» Any responding metastatic relapse in patients >18 months

Relapsed Disease * Relapse of MYCN amplified tumors without prior ASCT

ASCT: autologous stem cell transplantation, INRG: International Neuroblastoma Risk Group,
INSS: International Neuroblastoma Staging System, NB: neuroblastoma

The International Society of Pediatric Oncology European Neuroblastoma (SIOPEN)
conducted a randomized trial and demonstrated the superiority of busulfan and melphalan
over CEM (carboplatin, etoposide, and melphalan) as a conditioning regimen for ASCT
in pediatric patients with NB (459). Additionally, thiotepa, as an alkylating agent, is wi-
dely utilized in conditioning regimens in combination with melphalan for various solid
tumors, including high-risk NB and medulloblastoma (460).

Moreover, meta-iodobenzylguanidine (MIBG), a norepinephrine analog that is taken
up by 90% of NBs, labeled with iodine-131 (*'I-MIBG), has been effective against both
R/R and newly diagnosed NB. The incorporation of *'I-MIBG targeted RT in the treat-
ment of R/R NB has resulted in response rates of up to 37%, with dose-limiting hemato-
logic toxicity being managed through the support of ASCT (461, 462).

Considering these factors, at RIOHCT, we employ a combination of busulfan, mel-
phalan, and thiotepa followed by ASCT for high-risk NB patients, along with *'I-MIBG
therapy administered before stem cell harvest in MIBG-avid tumors [Figures 31].

Figure 31. Autologous Stem Cell Transplant (ASCT)
¢ Neuroblastoma (BU-MEL-TT +/- MIBG)
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13-cis-retinoic acid: Due to the high risk of relapse from MRD following ASCT, 13-cis-
retinoic acid (cis-RA), a known differentiating agent for NB, is considered a crucial com-
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ponent of multimodal therapy aimed at addressing any residual NB that remains after
maximal tumor burden reduction through high-dose chemotherapy (HDCT) and stem cell
transplantation. The administration schedule consists of six cycles of oral cis-RA at 160
mg/m? per day, divided into two doses for 14 days every 28 days. Dose-limiting toxicities
associated with cis-RA treatment may include hepatic dysfunction, hypercalcemia, skin
rash, anemia, thrombocytopenia, and vomiting; however, these side effects typically re-
solve after discontinuation of the medication (463, 464).

Anti-GD2 immunotherapy: Another agent targeting MRD is the anti-GD2 monoclo-
nal antibodies, specifically dinutuximab and naxitamab, which have received Food and
Drug Administration (FDA) approval and have been shown to improve EFS and OS when
administered after ASCT. Anti-GD2 immunotherapy is now considered the standard of
care for all high-risk NB patients in remission following ASCT, significantly enhancing
the effectiveness of post-transplant treatment strategies (464, 465).

Tandem versus Single ASCT

The benefit of tandem myeloablative therapy plus ASCT in NB patients subsequently
treated with anti-GD2 immunotherapy, compared to single ASCT, was confirmed in a
randomized controlled trial (RCT) by Park et al (466). However, the study indicates that
this benefit may not be evident in the subgroup of patients who did not receive anti-GD2
immunotherapy, which is consistent with findings from a retrospective study by Yan et al
(467). Overall, data from both randomized and non-randomized controlled trials compa-
ring tandem and single ASCT are heterogeneous, not definitive and subject to bias. The
observed effects suggest that in patients who did not receive immunotherapy, tandem
ASCT may not offer any additional advantages over single ASCT. Consequently, tandem
ASCT is not currently considered the standard of care for NB.

Allogeneic Hematopoietic Stem Cell Transplantation for
Children with High-Risk Neuroblastoma

Given the notable alloreactive effects mediated by the cytotoxic functions of natural killer
(NK) cells, combined with advancements in supportive care and the development of re-
duced-intensity or NMA conditioning regimens, several research groups are reevaluating
the use of allogeneic HSCT in NB (468).

A retrospective analysis from the CIBMTR examined the outcomes of high-risk and
refractory NB patients undergoing allogeneic HSCT. The study revealed superior EFS for
patients who had not previously undergone ASCT. However, transplant-related mortality
(TRM) remains a significant limitation of the procedure’s applicability (469).

Haploidentical HSCT is noteworthy due to its association with strong alloreactive NK
cell-mediated graft-versus-tumor (GVT) responses. Illhardt et al. indicated that haploi-
dentical HSCT is a feasible treatment option for NB patients, with the potential to induce
long-term remission in some cases while causing tolerable side effects. This approach
may enable the development of further post-transplantation therapeutic strategies based
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on harnessing the donor-derived immune system (470).

At the Pediatric Cell Therapy Unit of RIOHCT, we utilize reduced-intensity haploi-
dentical HSCT for children with NB who experience progression after ASCT [Figure
32].

Figure 32.Reduced Intensity Conditioning (RIC): (FLU-TT-MEL)
* Neuroblastoma
* Haploidentical Stem Cell Transplantation
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Wilms' tumor

The successful application of high-dose chemotherapy combined with stem cell trans-
plantation for treating recurrent Wilms’ tumor (WT) has been documented by various
research groups, with EFS estimates ranging from 36% to 60% (471-473). However,
similar findings have also emerged from non-randomized studies (474, 475). Therefore,
conducting a randomized trial comparing maintenance chemotherapy with consolidation
against HDCT followed by ASCT is crucial.

Additionally, based on the experiences of the SIOP, GPOH, National Wilms Tumor
Study Group (NWTS), and Medical Research Council (MRC) groups, adverse prognostic
factors, as summarized in Table 21, are regarded as indications for ASCT in pediatric
patients with WT (2).

Table 21. Indications for ASCT in Wilms' Tumor

Clinical Condition

Indication for ASCT

Unfavorable Histology and Me-
tastatic Disease

* Diagnosis of Wilms’ tumor with unfavorable his-
tology and metastatic disease

Relapse with Unfavorable His-
tology and one of the following
criteria:

* Extra-pulmonary relapse or abdominal relapse
after RT

« Stage IV

* More than two drugs in the first-line regimen

* Relapse within 1 year
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RT: radiation therapy

Melphalan, MEC (melphalan, etoposide, and carboplatin), and CyET (cyclophosphami-
de, etoposide, and thiothepa) are the most commonly used conditioning regimens for
ASCT in WT. However, a study conducted on behalf of the European Society for Blood
and Marrow Transplantation (EBMT) Pediatric Diseases Working Party found that the
choice of pretransplant regimen—whether melphalan alone or multi-drug combinati-
ons—did not significantly affect EFS or OS probabilities after ASCT (476).

At RIOHCT, we utilize the MEC regimen for ASCT in pediatric patients with WT
[Figure 33].

Figure 33. Autologous Stem Cell Transplantation (ASCT): (MEL-ETO-CBDCA)
e Wilms Tumor
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Germ Cell Tumors

Pediatric patients with extracranial germ cell tumors (GCTs) typically have excellent out-
comes with conventional platinum-based chemotherapy. However, high-risk patients—
including non-responders, poor responders, and those who fail to achieve complete remis-
sion (CR) after relapse—may require additional treatments such as RT, targeted therapy,
or HDCT with ASCT, depending on the patient’s clinical and tumor molecular profile.
While previous studies have not definitively shown the benefits of HDCT combined
with ASCT as a frontline therapy, several small observational studies suggest that most
children with R/R GCTs do benefit from this approach. For the central nervous system
(CNS) GCTs, HDCT, and ASCT may be considered for patients under 18 years of age
who experience recurrence and insufficient response to primary chemotherapy (2, 476).
Several conditioning regimens have been used for ASCT in patients with R/R GCTs.
These regimens include (477, 478):
o CarboPEC: carboplatin 250-350 mg/m? for 4 days, etoposide 250—400 mg/m? for
4 days, and cyclophosphamide 1.6 g/m? for 4 days.
o CE: carboplatin 250-500 mg/m? for 3—4 days and etoposide 250-400 mg/m? for
3—4 days.
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o TE: Thiotepa 300 mg/m? for 3 days and etoposide 250-300 mg/m? for 3 days.
e MEC: melphalan 140 mg/m? on day -6, etoposide 200 mg/m? on days -6 to -3, and
carboplatin 200 mg/m? on days -6 to -3.
Given that carboplatin and etoposide are commonly used in the frontline treatment of
children with GCTs, it is advisable to incorporate other chemotherapy agents, such as
melphalan or thiotepa, into the conditioning regimen.
At the Pediatric Cell Therapy Unit of RIOHCT, we utilize the CarboPEC conditioning

regimen for extracranial GCTs [Figure 34], while TE conditioning is employed for pa-
tients with CNS GCTs [Figure 35].

Figure 34.Autologous Stem Cell Transplantation (ASCT): (CarboPEC)
e Germ Cell Tumor (GCT)
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Ewing Sarcomas

The role of HDCT combined with ASCT in the upfront treatment of newly diagnosed
Ewing sarcoma (ES) remains a topic of ongoing debate (479).

The EURO-EWING 99 study investigated the role of ASCT with a busulfan/melphalan
conditioning regimen in newly diagnosed ES patients with localized, high-risk disease as
part of the R2Loc trial. High-risk was defined as having a tumor volume greater than 200
milliliters or a poor histological response, indicated by more than 10% viable tumor cells
in the resection specimen at the time of local control. The results revealed a statistically
significant improvement in OS and EFS for patients who received ASCT (480).

Primary metastasis in ES is recognized as the most significant poor prognostic factor,
leading to a five-year survival rate of less than 30%. While there is currently no definitive
evidence supporting the effectiveness of ASCT for ES patients with primary metastasis to
non-pulmonary sites, the Ewing 2008R3 RCT, which utilized treosulfan and melphalan
followed by ASCT, indicated a benefit for children under 14 years old (481). In contrast,
the R2PULM trial, which focused solely on patients with pulmonary metastasis, did not
demonstrate a clear advantage for the combination of busulfan and melphalan followed by
ASCT when compared to conventional chemotherapy and whole lung irradiation (482).

Additionally, ASCT has been investigated as a treatment option for relapsed ES, which
is known for its aggressive nature and poor prognosis. Most studies suggest that HDCT
combined with ASCT as a consolidation regimen is associated with improved OS and
EFS compared to conventional chemotherapy. However, RCTs are necessary to establish
the true clinical benefits of ASCT in patients with relapsed ES (483).

The conditioning regimen utilized for ASCT in children and adolescents with ES at the
Pediatric Cell Therapy Unit of RIOHCT is busulfan/melphalan, as illustrated in Figure
36.

Figure 36.Autologous Stem Cell Transplant (ASCT): (BU-MEL)
* Ewing sarcoma (ES) & Primitive neuroectodermal tumor (PNET)
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Allogeneic Hematopoietic Stem Cell Transplantation for
Children with Ewing Sarcoma

Despite intensive treatment, the five-year survival rate for patients with relapsed or ref-
ractory Ewing sarcoma family tumors (RR-ESFTs) remains less than 20%. Allogeneic
HSCT has emerged as a potential therapeutic option to leverage the graft-versus-ES effect
through cellular immunotherapy. This approach is particularly promising with haploiden-
tical HSCT, which is associated with a stronger allogeneic immune response compared
to conventional HSCT (484). While there are some reports of using allogeneic HSCT for
patients with RR-ESFTs, (485-487) further research is needed to evaluate its efficacy and
to understand the mechanisms driving the GVT effect. This knowledge is essential for
optimizing treatment strategies for this high-risk patient population.

Brain Tumors

Over the past several years, researchers have investigated the use of HDCT combined
with autologous stem cell rescue for patients with various CNS tumors. The primary ob-
jectives are to avoid RT in infants and young children under four years of age, to deliver
dose-intensive chemotherapy, and to treat patients with recurrent disease (435).

Indications for ASCT include:

¢ High-risk medulloblastoma (primary metastases or relapse) in patients older than
three years
¢« CNS GCT
e Metastatic primitive neuroectodermal tumors (PNETSs) at diagnosis or those with
additional high-risk features such as incomplete resection or young age (under
three or five years)
¢ Young children under four years with malignant brain tumors
The role of ASCT in high-grade gliomas, ependymomas, brain stem gliomas or pineo-
blastoma remains controversial (2, 435).

Outcomes following ASCT are influenced by the disease status before chemotherapy,
as well as tumor histology and location. For instance, patients with medulloblastoma have
shown favorable outcomes, with a five-year EFS rate of 52%, while those with supraten-
torial ependymoma have a three-year EFS rate of 86%. In contrast, patients with infraten-
torial ependymoma and atypical teratoid/rhabdoid tumors (ATRT) have poorer outcomes,
with three-year and two-year EFS rates of 27% and 29%, respectively (488, 489).

The ideal conditioning regimen for ASCT in brain tumors should effectively and ra-
pidly penetrate the CNS (490). Recent conditioning regimens typically incorporate al-
kylating agents, such as thiotepa, platinum-based drugs, melphalan, and busulfan, often
combined with topoisomerase inhibitors. Thiotepa is frequently included due to its ability
to achieve similar concentrations in blood and cerebrospinal fluid (CSF) (491). Common
conditioning combinations include BU/TT (busulfan/thiotepa), VP/TT/CBDCA (etopo-
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side/thiotepa/carboplatin), and tandem approaches like VP16/CBDCA (etoposide/carbo-
platin)—TTP/L-PAM (thiotepa/melphalan) (2).

At RIOHCT, we utilize the VP/TT/CBDCA regimen for pediatric patients with brain
tumors [Figure 37]. For infants and young children under three years old with malignant
brain tumors, our preferred conditioning approach is a tandem regimen consisting of eto-
poside/carboplatin followed by thiotepa/melphalan [Figure 38].

Figure 37. Autologous Stem Cell Transplant (ASCT): (VP/TT/CBDCA)
e Brain Tumor
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Abbreviations

A
ABW Adjusted ideal body weight
ACS Acute chest syndrome
AD EDA-ID Autosomal dominant anhidrotic ectodermal dysplasia with immune de-

ficiency

AIS Acute inflammatory syndrome
ALD Adrenoleukodystrophy
ALL Acute lymphoblastic leukemia
AML Acute myeloid leukemia
ANC Absolute neutrophil count

APL Acute promyelocytic leukemia
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ARO Autosomal recessive osteopetrosis
ASCT Autologous stem cell transplantation
ASMD Acid sphingomyelinase deficiency
ATLG Anti-T-lymphocyte globulin
ATO Arsenic trioxide
ATRA All-trans retinoic acid
ATRT Atypical teratoid/rhabdoid tumors
AUC Area under the concentration—time curve

B
BBB Blood-brain barrier
B-CLL B-cell chronic lymphocytic leukemia
BEN Bendamustine
BL Burkitt lymphoma
BM Bone marrow
BMF Bone marrow failure
BMI Body mass index
BMT Bone marrow transplantation
BNP B-type natriuretic peptide
BU Busulfan

C
CAIl Carbonic anhydrases 11
CAMT Congenital amegakaryocytic thrombocytopenia
CAR Chimeric antigen receptor
CB Cord blood
CBDCA Carboplatin
CCALD Childhood Cerebral ALD
CGD Chronic granulomatous disease
CHS Chediak-Higashi syndrome
CID Combined immunodeficiency
CIR Cumulative incidence of relapse
cis-RA 13-cis-retinoic acid
CMR Complete molecular remission
CMV Cytomegalovirus
CNI Calcineurin inhibitor
CNS Central nervous system
COVID-19  Coronavirus disease 2019
CrCl Creatinine clearance
CR Complete remission
CR1 First complete remission
CRRT Continuous renal replacement therapy
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CSA
CSF
Css
CT
CY

D
DBA
DC
DF
DHR
DLBCL
DSA

EBV
ECG
EFS
EN
EOC
EOI
ER
ERT
ES
ETO

FA

FDA
FDG-PET
FFP

FHL

FLU

GCT
GD2

GF

GFR

GI
GM-CSF
GO

Cyclosporine A
Cerebrospinal fluid
Concentration at steady state
Computed tomography
Cyclophosphamide

Diamond-Blackfan anemia
Dendritic cell

Defibrotide

Dihydrorhodamine

Diffuse large B-cell lymphoma
Donor-specific anti-HLA antibody

Epstein—Barr virus
Electrocardiogram
Event-free survival

Enteral nutrition

End of Consolidation

End of Induction
Extended-release

Enzyme replacement therapy
Ewing sarcoma

Etoposide

Fanconi anemia

Food and Drug Administration
18-Fluoro-deoxyglucose positron emission tomography
Fresh frozen plasma

Familial HLH

Fludarabine

Germ cell tumor

Disialoganglioside

Graft failure

Glomerular filtration rate

Gastrointestinal

Granulocyte-macrophage colony—stimulating factor
Gemtuzumab ozogamicin
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GS2 Griscelli syndrome type 2
GVHD Graft-versus-host disease
GVL Graft-versus-leukemia
GVT Graft-versus-tumor
H
hATG Horse-derived anti-thymocyte globulin
Hb Hemoglobin
HBV Hepatitis B virus
HCV Hepeatitis C virus
HDCT High-dose chemotherapy
HIV Human immunodeficiency virus
HLA Human leukocyte antigen
HLH Hemophagocytic lymphohistiocytosis
HL Hodgkin lymphoma
HPC Hematopoietic progenitor cell
HSC Hematopoietic stem cell
HSCGT Hematopoietic stem cell gene therapy
HSCT Hematopoietic stem cell transplantation
HSV Herpes Simplex Virus
HZ Herpes zoster
I
IBW Ideal body weight
IBMFS Inherited bone marrow failure syndrome
IEI Inborn errors of immunity
IEM Inborn errors of metabolism
IFI Invasive fungal infections
IL Interlukin
ILD Interstitial lung disease
M Intramuscular
IMPDH Inosine-50-monophosphate dehydrogenase
INRG International Neuroblastoma Risk Group
INSS International Neuroblastoma Staging System
IS Immunosuppressive
IVIG Intravenous immunoglobulin
v Intravenous
J
| JMML Juvenile myelomonocytic leukemia
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LAD
LRC
LSD

M
MAC
MDR
MDS
MEL
MFI
MIBG
MLD
MMF
MNGIE
MN
MPA
MPAL
MPS
MRA
MRC
MRD
MRD
MRI
MSD
mtDNA
mTOR
MTX
MUD

NB
NHL
NK
NMA
NPD
NRM
NSAID

OM
OPT
(O]

Leukocyte adhesion deficiency
Locarelli risk classification
Lysosomal Storage Diseases

Myeloablative conditioning
Multi-drug resistant
Myelodysplastic syndrome
Melphalan

Mean fluorescence intensity
Meta-iodobenzylguanidine
Metachromatic Leukodystrophy
Mycophenolate mofetil
Mitochondrial neurogastrointestinal encephalomyopathy
Monocyte

Mycophenolic acid

Mixed phenotype acute leukemia
Mucopolysaccharidoses
Magnetic resonance angiography
Medical Research Council
Matched related donor
Measurable residual disease
Magnetic resonance imaging
Matched sibling donor
Mitochondrial DNA

Mechanistic target of rapamycin
Methotrexate

Matched unrelated donor

Neuroblastoma

Non-Hodgkin lymphoma

Natural killer

Non-myeloablative

Niemann-Pick disease

Non-relapse mortality

Non-steroidal anti-inflammatory drug

Oral mucositis
Osteopetrosis
Overall survival
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P
pB-LBL Primary B-cell lymphoblastic lymphoma
PB Peripheral blood
PBSC Peripheral blood stem cell
PC Platelet concentrates
PCR Polymerase chain reaction
PFS Progression-free survival
PID Primary immunodeficiency
PIRRT Prolonged intermittent renal replacement therapy
PJP Pneumocystis jirovecii pneumonia
PK Pharmacokinetics
PML Progressive multifocal leukoencephalopathy
PMN Polymorphonuclear
PNET Primitive neuroectodermal tumors
PNH Paroxysmal nocturnal hemoglobinuria
PO Per os
PPI Proton pump inhibitor
PRCA Pure red cell aplasia
PRES Posterior reversible encephalopathy syndrome
PRN Pro re nata
PTCY Post-transplant cyclophosphamide
PTIS Pre-transplant immune suppression phase
R
rATG Rabbit-derived anti-thymocyte globulin
RCC Refractory cytopenia of childhood
RCT Randomized-controlled trial
RFS Relapse-free survival
RIC Reduced-intensity conditioning
RR-ESFT Relapsed or refractory Ewing sarcoma family tumors
R/R Relapsed or refractory
RTA Renal tubular acidosis
S
SAA Severe aplastic anemia
SCD Sickle cell disease
SDCT Standard-dose chemotherapy
SCID Severe combined immunodeficiency
SIR Sirolimus
SOS Sinusoidal obstruction syndrome
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T
TT
TAC
TBI
TBW
TCD
TCI
TCR
TDM
TDT
T-LBL
t-MDS
T™MP
TPE
TPN
TRM
TTP
TYMP

UCB
UDCA
uv

VOD
VZV

WAS
WT

| XLP

Thiotepa

Tacrolimus

Total body irradiation

Total body weight

T-cell depletion

Transplant conditioning intensity
T-cell receptor

Therapeutic drug monitoring
Transfusion-dependent thalassemia
T-cell lymphoblastic lymphoma
Therapy-related myelodysplastic syndrome
Trimethoprim

Therapeutic plasma exchange

Total parenteral nutrition
Treatment-related mortality
Thrombotic thrombocytopenic purpura
Thymidine phosphorylase

Umbilical cord blood
Ursodeoxycholic acid
Ultraviolet

Veno-occlusive disease
Varicella-zoster virus

Wiskott-Aldrich syndrome
Wilms’ tumor

X-linked lymphoproliferative disease
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Supplement 1

Route

of ad- Dose
minist- rounding
ration

Storage

Preparation

Store intact vials under refre-
girator at 2 to 8 °C
Diluted solution is stable for

Diluent must be 10
times the volume of

. Bus.ulfan If<60 | up to 8 hours at room tempre-
Dilute in N/S or o
= D/W 5% mg: to the | ture (25°C) and 12 hours at
S . ’ nearest 1.2 the refregirator
— v Infusion over 2 .
= . . . . mg Busulfan must not be infused
® infusion | hours via CV-line . .
= . I[f>60 mg: | concomitantly with another
=) Flush the line before . .
and after the infusion to nearest intravenous solution.
6 mg Anticonvulsant should be

Concentration to be
as close to 0.5 mg/
mL as possible

administrated 24 h prior to
Busulfan up to 24 h after the
last dose of Busulfan.

e Quantity of Busulfan:

Y (kg) x D (mg/kg) / 6 (mg/ml) = A ml of Busulfan to be diluted
Y: body weight of the patient in kg (Actual Body Weight)

D: dose of Busulfan

* Quantity of diluent:
(A ml Busulfan) x (10) = B ml of diluent

* Administration dose:

<9 kg: 1 mg/kg* every 6 hours

9-16 kg: 1.2 mg/kg* every 6 hours

16-23 kg: 1.1 mg/kg* every 6 hours

23-34 kg: 0.95 mg/kg* every 6 hours

>34 kg: 0.8 mg/kg* every 6 hours

Total of doses: 16 doses

[} Bu: ABW25 = [BW + 0.25 (TBW — [BW)]

Fanconi Anemia:
IV infusion, 0.16 mg/kg/day, Total of doses: 16 doses [Use IBW (Ideal Body Weight) or
TBW (Total Body Weight), whichever is lower. If BMI>35 kg/m?: use AIBW.]
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Therapeutic Drug Monitoring (TDM)
e Sample material: Plasma
e Time of sampling:
o AUC-based monitoring (Bayesian estimation): It is advised to draw at least 4
samples after the first infusion of busulfan on day 1:
e S1: 5 minutes after the end of infusion.
e S2: 1 hour after the end of infusion.
e S3:2 hours after the end of infusion.
e S4: 3 hours after the end of infusion.
O Additional sampling: In case of a dose adjustment >25% or in the presence of
risk factors for toxicity, TDM on the following day of treatment is advised.
o Target exposure:
e 4-day cumulative AUC (AUC
o 0 90 mgxh/L.

of 80-100 mgxh/L, targeting an AUC

cum day 0»4) cum day

Drug Overdoses
e There is no known antidote to Busulfan other than hematopoietic progenitor cell
transplantation.
o Dialysis should be considered.
e The use of NAC and Defibrotide may be helpful.

Drug interactions
e Avoid paracetamol within 72 h prior to or concurrently with Busulfan.
e Monitor for increased BU concentrations/ toxicity when used concurrently.

Dose modifications

1. Obese patients

For obese patients, dosing based on adjusted ideal body weight 25 (ABW25) should be
considered. (ABW25 =1BW + 0.25 (TBW — IBW))

2. Renal and Hepatic Impairment

Patients with renal impairment

No dose adjustment (Studies in renally impaired patients have not been conducted, howe-
ver, as busulfan is moderately excreted in the urine, dose modification is not recommen-
ded in these patients. However, caution is recommended).

Patients with hepatic impairment

No dose adjustment (Busilvex as well as busulfan has not been studied in patients with
hepatic impairment. Caution is recommended, particularly in those patients with severe
hepatic impairment).

Supportive care

Seizure prophylaxis

Levetiracetam: 10 mg/kg/BD PO or IV (max: 500 mg/dose) from 24 hours before Bu
initiation up to 24 hours after the last dose of busulfan.
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Supplement 2

Route

of ad- Dose
minist- rounding
ration

Storage

Preparation

Store intact vials up to 25°C;
excursions are permitted up
to 30°C.

Protect from light.

The solution in the vial (re-
constituted with SWFI) is

Reconstitute 25 mg
vial with 5 mL and
100 mg vial with
20 mL of SWFI to
a concentration of

infusion in 500 mL
NS or D/S to a final
concentration of 0.2
to 0.6 mg/mL; mix
thoroughly.
Infusion over 30-60
min via CV-line

mL of NS or D/S for infusion
is stable for 24 hours refrige-
rated or 3 hours at room tem-
perature (15°C to 30°C) and
room light.
Infusion must be completed
within these time frames.

) .

-E g (;n Iﬁﬁﬂ;exlgz stable for 30 minutes (transfer

4 o ) Tothe |to 500 mL infusion bag within
v constitution, dilute .

E infusion | appropriate dose for nearest 23 that 30 minutes).

S pprop mg The solution diluted in 500

g

=]

Drug Overdoses
o No specific antidote for bendamustine hydrochloride overdose is known.
e Management of overdosage should include general supportive measures, inclu-
ding monitoring of hematologic parameters and ECGs.

Drug intervals
e No need for additional consideration.

Drug interactions
e No significant interaction with usual used medications

Dose modifications

1. Obese patients

For obese patients, dosing based on total body weight (TBW) should be considered.
2. Renal and Hepatic Impairment

Patients with renal impairment

No dose adjustment

(Some references NOT recommend in eGFR <30 mL/min)
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Patients with hepatic impairment
Mild impaiment (Bilirubin <1.7 or AST or ALT less than 1.5 times ULN): No dose ad-

justment
Moderate impairment (Bilirubin: 1.7- 2.9): 70% of standard dose

Severe impaiment (Bilirubin >3): Not recommended
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Supplement 3

Route

of ad- Dose
minist- rounding
ration

Storage

Preparation

Store intact vials at the room
temperature (25°C)
The reconstituted solution

-qu: is stable for 24 hours at the
.E Reconstitute with 25 25°C and 6 days at the refi-
_g mL N/S or SWFI, To the girater

o v then dilute in N/S or £20 IV Mesna should be adminis-
_g infusion D/W feares tarted (see Mesna)

g Infusion over 2 e Consider hyperhydration (3 L/
) hours via CV-line m2/24 hours of N/S) begining
& at least 4 hours before Cyclo-

phosphamide and continue
at least 24 hours after Cyclo-
phosphamide termination.

Drug overdose
e No specific antidote for cyclophosphamide is known.
e Cyclophosphamide is dialyzable.

Dose modifications

1. Obese patients

For obese patients, dosing based on ideal body weight (IBW) should be considered.
2. Renal and Hepatic Impairment

Patients with renal impairment

e¢GFR >30 mL/min: No dose adjustment

eGFR 10-29 mL/min: 75% of normal dose

eGFR <10 mL/min: 50% of normal dose

HD: Not recommended; if unavoidable: 50% of normal dose
Patients with hepatic impairment

Serum bilirubin <3 mg/dL: No dose adjustment

Serum bilirubin from 3.1 to 5 mg/dL: 75% of normal dose
Serum bilirubin >5 mg/dL: Not recommended
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Supportive care

Hydration and diuresis
Recommended hydration regimen is 3 L/m?*24 hours of N/S begining at least 4 hours
before Cyclophosphamide.

o Continue hydration for at least 24 hours after completion of cyclophosphamide.

o Diuretics may be indicated for positive fluid balance, weight gain or declining
urine production, and to maintain urine output >150 mL/h.
o Furosemide 0.5-1 mg/kg IV PRN should be prescribed.

Mesna (sodium 2-mercapto ethane sulfonate): 10% of Cyclophosphamide daily dose
30 minutes before Cyclophosphamide , then 100% of Cyclophosphamide daily dose in-
fusion from the time of Cyclophosphamide initiation until 24 hours.




192 Pediatric Hematopoietic Stem Cell Transplantation Protocols

Supplement 4

Route
of ad- . Dose
- Preparation R
minist- rounding
ration

Storage

Reconstitute 50 mg
vial initially with
10 mL of supplied

diluent to a concen-

tration of 5 mg/mL.

Shake immediately
and vigorously to

dissolve. Immediate-

Stability is limited; must be
prepared fresh. The time bet-
. . ween reconstitution/dilution
v 13(]) ?lf?xtljlld:oszclélnlt\rlf To the nea- | and administration of must be
infusion rest 2 mg | kept to a minimum (<60 min).

Melphalan

ion <
tion ._0'45 mg/mL. Do not refrigerate solution;
Infusion over 15-20 o .
. precipitation occurs if stored
min (a rate NOT to at 5°C
exceed 10 mg/min) '
via CV-line

* Consider hydration
pre- and post-mel-
phalan administra-

tion

Drug Overdoses

o There is no known specific antidote to melphalan.

e Appropriate supportive treatment, such as blood transfusion, antimicrobials and/
or hematopoietic growth factors (e.g., G-CSF, GM-CSF) should be instituted if
needed.

o This drug is not removed from plasma to any significant degree by haemodialysis
or haemoperfusion.

o The blood picture should be closely monitored for at least 4 weeks following over-
dosage until there is evidence of recovery.

Drug intervals
e No need for additional consideration.

Dose modifications

1. Obese patients
TBW; if patients weigh >130% of their IBW, BSA better to be calculated using ABW.
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2. Renal and Hepatic Impairment
Patients with renal impairment

No dose adjustment
Patients with hepatic impairment
No dose adjustment

Supportive care

Hydration and diuresis

Pre- and post-hydration should be considered for melphalan (to prevent nephrotoxicity).
N/S 125 mL/m2/h for 2 hours pre-melphalan and 6 hours post-melphalan.

10 mmol Potassium may be added to each 1 L of fluid.
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Supplement 5

Route

of ad- Dose
minist- rounding
ration

Storage

Preparation

Reconstitute each
15 mg vial with 1.5

mL SWFI to a con-
centration of 10 mg/
mL. Gently mix by Store intact vials under refri-
repeated inversions. geration (2°-8°C) and protect
Further dilute dose from light.
volume of reconsti- Reconstituted solution is sta-
g tuted solution in N/S ble for 8 hours in refrigerator
2 v to a final concentra- | To the nea- (2°-8°C).
-E infusion | tion of 0.5- 1 mg/ | rest 5 mg | Diluted solution in N/S is sta-
i mL. ble for 24 hours at refrigerator
Infusion over 2-4 (2°-8°C) or 4 hours at room
hours through in-line temperature.

filter with a pore size
of 0.22 microns via
CV-line.
Flush line prior and
after infusion with
~5 mL N/S.

Drug Overdoses
o There is no known antidote for overdosage with thiotepa.
o Transfusions of whole blood or platelets have proven beneficial to the patient in
combating hematopoietic toxicity.

Dose modifications
1. Obese patients
For obese patients, dosing based on adjusted body weight 40 (ABW40) should be con-
sidered.
(ABW40 =1BW + 0.4 (TBW — IBW))
2. Renal and Hepatic Impairment
Patients with renal impairment
e¢GFR >30 mL/min: No dose adjustment
eGFR <30: 70% of standard dose
HD: 70% of standard dose (Thiotepa is dialyzable)
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Patients with hepatic impairment

Serum bilirubin <1.5 x ULN: No dose adjustment

Serum bilirubin 1.5-3 x ULN: Monitor closely (intensify monitoring)
Serum bilirubin >3 x ULN: Not recommended
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Supplement 6

Route
of ad- . Dose
— Preparation rounding Storage
ration
Dilute in D/W or Store intact vials at 20°C to
N/S to a final con- 25°C; do not freeze.
centration of 0.2 to Diluted solutions have con-
0.4 mg/mL. centration-dependent stability.
Infusion over 60 min 0.2 mg/mL reconstitute so-
through non-PVC lution is stable for 96 hours
§ (low sorbing) tubing To th at room temperature and 0.4
4 v via CV-line © tCS 0 mg/mL solution is stable for
g" infusion | ***Etoposide in- feares 24 hours at room temperature
E jection contains me (precipitation may occur at
polysorbate 80 concentrations above 0.4 mg/
which may cause mL).
leaching of DEHP, a Higher concentrations and
plasticizer contained longer storage time after pre-
in PVC bags and paration in PVC bags may
tubing. increase DEHP leaching.

Drug Overdoses
e No specific antidote for etoposide overdose is known.

o Supportive care should be applied.

Drug intervals
e No need for additional consideration.

Drug interactions
» No significant interaction with usual used medications

Dose modifications

1. Obese patients

Actual body weight (TBW) for calculation of BSA for BSA-based dosing and dosing
based on adjusted ideal body weight 25 (ABW25) should be considered for mg/kg dosing
(ABW25 =IBW + 0.25 (TBW — IBW)).

2. Renal and Hepatic Impairment
Patients with renal impairment

eGFR >50 mL/min: No dose adjustment
eGFR 15- 50 mL/min: 75% of standard dose
eGFR <15 mL/min: 50% of standard dose
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HD: 50% of standard dose (not dialysed)
Patients with hepatic impairment

Bilirubin <3 mg/dL: No dose adjustment
Bilirubin >3 mg/dL: 50% of standard dose
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Supplement 7

Route

of ad- Dose
minist- rounding
ration

Storage

Preparation

Store intact vials of powder
for reconstitution at 20°C to
25°C.

Store intact vials of solution
at 15°C to 30°C.

Protect from light.

o Reconstitute with Reconstituted solutions
£ SWFI, then dilute in To the should be stored at room tem-
'§ v 250 to 1,000 mL N/S perature and used within 48
= . . nearest 10
s infusion or D/W. m hours.
5} Infuse over 1-3 £ Solutions for IV infusion di-

hours luted in D/W or N/S retained

94% to 100% of potency after
8 days when stored at room
temperature, although the
manufacturer recommends
administration as soon as pos-
sible after preparation.

Drug Overdoses
e No specific antidote for cytarabine overdose is known.
o Supportive care should be applied.

Drug intervals
e No need for additional consideration.

Drug interactions
o No significant interaction with usual used medications

Dose modifications

1. Obese patients

For obese patients, dosing based on total body weight (TBW) should be considered.
2. Renal and Hepatic Impairment

Patients with renal impairment

No dose adjustment

Patients with hepatic impairment
No dose adjustment
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Supportive care

To prevent a chemical induced conjunctivitis developing with cytarabine, artificial tears
may be administered (2 drops per eye 4 hourly) starting 1 day before cytarabine treat-
ment and continuing for 48 hours after last dose of cytarabine as prophylaxis. If patient
becomes symptomatic treatment may escalate to corticosteroid eye drops 1-2 drops per
eye 4 hourly during waking hours prior to cytarabine and continued 5 days post treatment
should be considered.
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Supplement 8

Route
of ad- . Dose
- Preparation R
minist- rounding
ration

Storage

Reconstitute lyophi-

lized powder with ill‘el‘ifg::s
.qﬁ: Cjﬂiij;gg ;sz 5 <50 mgto | Store intact vials under refti-
-g JmL: then dil the nearest | geration (2°-8°C) and protect
= . IV. me mL’ t en d ute 2.5 mg and from light
,g infusion | for infusion in 100 . .
= mLN/S or D5SW to doses >50 | Reconstituted solution should
= 4 concentration of | M8 to the be used within 8 hours.

0.25 mg/mL nearest 5

Infusion over 30 min me

Drug Overdoses
e There is no known specific antidote for fludarabine over dosage.
o Treatment consists of drug discontinuation and supportive therapy.

Dose modifications

1. Obese patients

For obese patients, dosing based on total body weight (TBW) should be considered.
2. Renal and Hepatic Impairment

Patients with renal impairment

e¢GFR >80 mL/min: No dose adjustment

eGFR 50- 79 mL/min: 20 mg/m2

eGFR 30- 49 mL/min: 15 mg/m2

eGFR <30: Not recommended

HD: Not recommended (if unavoidable; 80% of standard dose)

Patients with hepatic impairment
No dose adjustment
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Supplement 9

Route

of ad- Dose
minist- rounding
ration

Preparation

Store intact vials at room tem-
perature at 25°C; excursions
permitted to 15°C to 30°C
Protect from light.
Diluted solution (0.5 mg/

Solution should be

diluted in 100- 250
mL of NS or D/W
to concentrations as

= low as 0.5 mg/mL mL) in N/S or D/W is stable
= Infusion over 15-60 o
—_ . To the at room temperature (25°C)
= v min . .

S . . nearest 10 | for 8 hours. Diluted solution
=) infusion | ***Needles or IV . .

— . . mg in PVC bag is stable for 24
< administration sets

@) hours.

that contain alumi-
num should NOT be
used in the preparati-
on or administration
of carboplatin.

Multidose vials are stable
for up to 14-15 days after
opening when stored at 25°C
following multiple needle
entries.

Drug overdose
o No specific antidote for carboplatin overdose is known.
o Supportive care should be applied.
o The anticipated complications of overdosage would be secondary to bone marrow

suppression and/or hepatic toxicity.

Drug intervals
e No need for additional consideration.

Drug interactions
o No significant interaction with usual used medications.

Dose modifications

1. Obese patients

TBW (for both BSA- and AUC-based dosing)

2. Renal and Hepatic Impairment

Patients with renal impairment

Dose according to the Calvert formula incorporating patient’s GFR
ARC (i.e., eGFR >125 mL/min): Consider eGFR=125 (max)

HD: Consider eGFR=0 in the Calvert formula

*** Calvert formula: Total dose (mg) = Target AUC x (eGFR + 25)
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Patients with hepatic impairment
No dose adjustment

Supportive care
*** Desensitization protocol may be required in the case of carboplatin anaphylactic re-
actions.
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Supplement

Route
of ad-
minist-
ration

v
infusion

rATG [Anti-thymocyte globulin (Rabbit-derived)]

10

Preparation

Allow vials to reach room tem-
perature, then reconstitute each
vial of ATG with 5 mL SWFI to a
concentration of 5 mg/mL. Rotate
vial gently until completely resol-
ved. Then, dilute in N/S or DSW
to a concentration of 0.5 mg/
mL (each 25 mg vial should be
diluted in 50 mL). Mix by gently
inverting infusion bag once or
twice.

Infusion over 6-12 hours through

in-line filter with pore size of 0.22

microns via CV-line. Subsequent

doses can be infused over 4 hours
if first dose tolerated.

For peripheral administration,
dilute in 500 mL N/S with the ad-
dition of 1000 units heparin.
**Immidiate treatment (SQ
epinphrine and corticosteroid)
should be available during infu-
sion for the managment of hyper-
sensitivity.

Dose
rounding

To the
nearest 20
mg

Storage

Store intact vials
in refrigerator
at 2°C to 8°C

(36°F to 46°F).

Do not freeze.

Protect from
light

Reconstituted
ATG is stable for
up to 24 hours at

room tempera-

ture.

Drug Overdoses:

e No specific antidote for ATG is known.
o Treatment should be symptomatic.

Drug intervals

o Avoid administration of ATG with other drugs or fluids via Y-site.

Dose modifications

1. Obese patients

ATG [Anti-thymocyte globulin (Rabbit)]: For obese patients, dosing based on total body
weight (TBW) should be considered.
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2. Renal and Hepatic Impairment
Patients with renal impairment
No dose adjustment.

Patients with hepatic impairment
No dose adjustment.

Supportive Care

Use premedication 1 hour before infusion:
e Acetaminophen 15 mg/kg (max: 650 mg), IV
e Diphenhydramine 1.25 mg/kg (max: 50 mg), IV
e Methylprednisolone 0.5 mg/kg, IV

Monitoring during the ATG infusion: blood pressure, pulse rate, respiration and tempera-
ture at 15, 30 and then 60 minutes intervals. The patient should be monitored closely for
adverse events during and for 3 to 4 hours after completion of the infusion; for both initial
and subsequent infusions.

If the patient becomes hypotensive or experiences chest or back pain, indicating anaphy-
laxis reactions, the infusion should be stopped immediately.

Platelets should be >50 x10°L on day 1 of ATG infusion or in the setting of clinically
symptomatic bleeding.

If the patient has no reaction to ATG platelets can be maintained at >30 x10%L for the
remaining days of ATG administration.



